求解数学题,详解哦
1)当x为何值时,(x-1)^-4*(2x+1)^3的值为正数2)y不等于0,A=x/y,B=(x+2)/(y+2),比较A与B的大小...
1)当x为何值时,(x-1)^-4*(2x+1)^3的值为正数
2)y不等于0,A=x/y,B=(x+2)/(y+2),比较A与B的大小 展开
2)y不等于0,A=x/y,B=(x+2)/(y+2),比较A与B的大小 展开
展开全部
你的第一题的式子是这个意思么?
[(x-1)^(-4)]×(2x+1)^3
(1).解:
原式=(2x+1)³/(x-1)⁴
∵(x-1)⁴>0
∴令2x+1>0,得x>-1/2
又∵x-1≠0
∴x≠1
即当x∈(-1/2,1)∪(1,+∞)时,上式的值为正数
(2).解:
A-B=x/y-(x+2)/(y+2)
=[x(y+2)-y(x+2)]/[y(y+2)]
=2(x-y)/[y(y+2)]
①当y(y+2)>0时,即y<-2或者y>0时:
若x-y>0,即x>y,则A>B
若x-y<0,即x<y,则A<B
②当y(y+2)<0时,即-2<y<0时:
若x-y>0,即x>y,则A<B
若x-y<0,即x<y,则A>B
综上所述:
当y<-2或者y>0,且x>y时,A>B
当y<-2或者y>0,且x<y时,A<B
当-2<y<0,且x>y时,A<B
当-2<y<0,且x<y时,A>B
[(x-1)^(-4)]×(2x+1)^3
(1).解:
原式=(2x+1)³/(x-1)⁴
∵(x-1)⁴>0
∴令2x+1>0,得x>-1/2
又∵x-1≠0
∴x≠1
即当x∈(-1/2,1)∪(1,+∞)时,上式的值为正数
(2).解:
A-B=x/y-(x+2)/(y+2)
=[x(y+2)-y(x+2)]/[y(y+2)]
=2(x-y)/[y(y+2)]
①当y(y+2)>0时,即y<-2或者y>0时:
若x-y>0,即x>y,则A>B
若x-y<0,即x<y,则A<B
②当y(y+2)<0时,即-2<y<0时:
若x-y>0,即x>y,则A<B
若x-y<0,即x<y,则A>B
综上所述:
当y<-2或者y>0,且x>y时,A>B
当y<-2或者y>0,且x<y时,A<B
当-2<y<0,且x>y时,A<B
当-2<y<0,且x<y时,A>B
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询