1个回答
展开全部
令x=sinθ,则:dx=cosθdθ,θ=arcsinx, ∴当x=1时,θ=π/2, 当x=1/√2时,θ=π/4。
∴原式=∫(上限π/2、下限π/4){√[1-(sinθ)^2]/(sinθ)^2}cosθdθ
=∫(上限π/2、下限π/4)[(cosθ)^2/(sinθ)^2]dθ
=∫(上限π/2、下限π/4){[1-(sinθ)^2]/(sinθ)^2}dθ
=∫(上限π/2、下限π/4)[1/(sinθ)^2]dθ-∫(上限π/2、下限π/4)dθ
=-cotθ(上限π/2、下限π/4)-θ(上限π/2、下限π/4)
=-cot(π/2)+cot(π/4)-π/2+π/4
=0+1-π/4
=1-π/4。
∴原式=∫(上限π/2、下限π/4){√[1-(sinθ)^2]/(sinθ)^2}cosθdθ
=∫(上限π/2、下限π/4)[(cosθ)^2/(sinθ)^2]dθ
=∫(上限π/2、下限π/4){[1-(sinθ)^2]/(sinθ)^2}dθ
=∫(上限π/2、下限π/4)[1/(sinθ)^2]dθ-∫(上限π/2、下限π/4)dθ
=-cotθ(上限π/2、下限π/4)-θ(上限π/2、下限π/4)
=-cot(π/2)+cot(π/4)-π/2+π/4
=0+1-π/4
=1-π/4。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询