二次函数y=(2/3)x^2的图像如图所示,点A0位于坐标原点,点A1,A2,A3, …A2008在y轴的正半轴上,点B1,B2,B3,

二次函数y=(2/3)x^2的图像如图所示,点A0位于坐标原点,点A1,A2,A3,…A2008在y轴的正半轴上,点B1,B2,B3,…B2008在二次函数y=(2/3)... 二次函数y=(2/3)x^2的图像如图所示,点A0位于坐标原点,点A1,A2,A3, …A2008在y轴的正半轴上,点B1,B2,B3,…B2008在二次函数y=(2/3)x^2位于第一象限的图象上,若△A0B1A1,△A1B2A2,△A2B3A3,…△A2007B2008A2008都为等边三角形,则△A2007B2008A2008的边长=__ 展开
毌哚児
2011-12-05 · TA获得超过383个赞
知道答主
回答量:60
采纳率:0%
帮助的人:36.5万
展开全部
分析:分别过B1,B2,B3作y轴的垂线,垂足分别为A、B、C,设A0A1=a,A1A2=b,A2A3=c,则AB1= 32a,BB2= 32b,CB3= 32c,再根据所求正三角形的边长,分别表示B1,B2,B3的纵坐标,逐步代入抛物线y= 23x2中,求a、b、c的值,得出规律.
解答:解:分别过B1,B2,B3作y轴的垂线,垂足分别为A、B、C,
设A0A1=a,A1A2=b,A2A3=c,则AB1= 32a,BB2= 32b,CB3= 32c,
在正△A0B1A1中,B1( 32a, a2),
代入y= 23x2中,得 a2= 23•( 32a)2,解得a=1,即A0A1=1,
在正△A1B2A2中,B2( 32b,1+ b2),
代入y= 23x2中,得1+ b2= 23•( 32b)2,解得b=2,即A1A2=2,
在正△A2B3A3中,B3( 32c,3+ c2),
代入y= 23x2中,得3+ c2= 23•( 32c)2,解得c=3,即A2A3=3,
由此可得△A2009B2010A2010的边长=2010.
故答案为:2010.
点评:本题考查了二次函数的综合运用.关键是根据正三角形的性质表示点的坐标,利用抛物线解析式求正三角形的边长,得到规律.
854thl
2012-04-17
知道答主
回答量:9
采纳率:0%
帮助的人:1.4万
展开全部
分析:分别过B1,B2,B3作y轴的垂线,垂足分别为A、B、C,设A0A1=a,A1A2=b,A2A3=c,则AB1= 32a,BB2= 32b,CB3= 32c,再根据所求正三角形的边长,分别表示B1,B2,B3的纵坐标,逐步代入抛物线y= 23x2中,求a、b、c的值,得出规律.
解答:解:分别过B1,B2,B3作y轴的垂线,垂足分别为A、B、C,
设A0A1=a,A1A2=b,A2A3=c,则AB1= 32a,BB2= 32b,CB3= 32c,
在正△A0B1A1中,B1( 32a, a2),
代入y= 23x2中,得 a2= 23•( 32a)2,解得a=1,即A0A1=1,
在正△A1B2A2中,B2( 32b,1+ b2),
代入y= 23x2中,得1+ b2= 23•( 32b)2,解得b=2,即A1A2=2,
在正△A2B3A3中,B3( 32c,3+ c2),
代入y= 23x2中,得3+ c2= 23•( 32c)2,解得c=3,即A2A3=3,
由此可得△A2009B2010A2010的边长=2010.
故答案为:2010.
点评:本题考查了二次函数的综合运用.关键是根据正三角形的性质表示点的坐标,利用抛物线解析式求正三角形的边长,得到规律.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
梁淼鑫
2011-12-04
知道答主
回答量:24
采纳率:0%
帮助的人:6.1万
展开全部
自己的见解,强人勿怪,有错要指出! √是根号
最终的答案是:2X√3X(x) 假如B2008的横坐标是2008,那么这△A2007B2008A2008的边长为:2X√3X2008=4016√3
需要具体的我会弄成图片,等等在发。
我的等级是1,我只能发在空间里,是解析相册的“解析01”
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
caosilianghao
2011-12-04
知道答主
回答量:2
采纳率:0%
帮助的人:3315
展开全部
22222
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式