已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.

黄色达达
2011-12-07 · TA获得超过294个赞
知道小有建树答主
回答量:471
采纳率:0%
帮助的人:148万
展开全部
解:(1)证明:①∵四边形ABCD是矩形,

∴AD∥BC,∴∠CAD=∠ACB,∠AEF=∠CFE,

∵EF垂直平分AC,垂足为O,∴OA=OC,

∴△AOE≌△COF,∴OE=OF,∴四边形AFCE为平行四边形,

又∵EF⊥AC,∴四边形AFCE为菱形,

②设菱形的边长AF=CF=xcm,则BF=(8-x)cm,

在Rt△ABF中,AB=4cm,由勾股定理得42+(8-x)2=x2,解得x=5,

∴AF=5cm.

(2)①显然当P点在AF上时,Q点在CD上,此时A、C、P、Q四点不可能构成平行四边形;

同理P点在AB上时,Q点在DE或CE上,也不能构成平行四边形.

因此只有当P点在BF上、Q点在ED上时,才能构成平行四边形,

∴以A、C、P、Q四点为顶点的四边形是平行四边形时,PC=QA,

∵点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,

∴PC=5t,QA=12-4t,

∴5t=12-4t,解得t=4/3,

∴以A、C、P、Q四点为顶点的四边形是平行四边形时,t=4/3秒.

②由题意得,以A、C、P、Q四点为顶点的四边形是平行四边形时,点P、Q在互相平行的对应边上.分三种情况:

i)当P点在AF上、Q点在CE上时,AP=CQ,即a=12-b,得a+b=12;

ii)当P点在BF上、Q点在DE上时,AQ=CP,即12-b=a,得a+b=12;

iii)当P点在AB上、Q点在CD上时,AP=CQ,即12-a=b,得a+b=12.

综上所述,a与b满足的数量关系式是a+b=12(ab≠0).
认真上分达
2012-05-28 · TA获得超过1628个赞
知道小有建树答主
回答量:538
采纳率:100%
帮助的人:156万
展开全部
(1)先证明四边形AFCE为平行四边形,再根据对角线互相垂直平分的平行四边形是菱形作出判定;根据勾股定理即可求得AF的长;
(2)①分情况讨论可知,当P点在BF上、Q点在ED上时,才能构成平行四边形,根据平行四边形的性质列出方程求解即可;
②分三种情况讨论可知a与b满足的数量关系式.
解:(1)①∵四边形ABCD是矩形,
∴AD∥BC,
∴∠CAD=∠ACB,∠AEF=∠CFE,
∵EF垂直平分AC,垂足为O,
∴OA=OC,
∴△AOE≌△COF,
∴OE=OF,
∴四边形AFCE为平行四边形,
又∵EF⊥AC,
∴四边形AFCE为菱形,
②设菱形的边长AF=CF=xcm,则BF=(8-x)cm,
在Rt△ABF中,AB=4cm,
由勾股定理得42+(8-x)2=x2,
解得x=5,
∴AF=5cm.

(2)①显然当P点在AF上时,Q点在CD上,此时A、C、P、Q四点不可能构成平行四边形;
同理P点在AB上时,Q点在DE或CE上,也不能构成平行四边形.
因此只有当P点在BF上、Q点在ED上时,才能构成平行四边形,
∴以A、C、P、Q四点为顶点的四边形是平行四边形时,PC=QA,
∵点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,
∴PC=5t,QA=12-4t,
∴5t=12-4t,
解得t=4/3,
∴以A、C、P、Q四点为顶点的四边形是平行四边形时,t=4 3 秒.

②由题意得,四边形APCQ是平行四边形时,点P、Q在互相平行的对应边上.
分三种情况:
i)如图1,当P点在AF上、Q点在CE上时,AP=CQ,即a=12-b,得a+b=12;
ii)如图2,当P点在BF上、Q点在DE上时,AQ=CP,即12-b=a,得a+b=12;
iii)如图3,当P点在AB上、Q点在CD上时,AP=CQ,即12-a=b,得a+b=12.
综上所述,a与b满足的数量关系式是a+b=12(ab≠0).
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
棉挽忆衣汉5927
2012-06-08 · TA获得超过6.9万个赞
知道大有可为答主
回答量:4.8万
采纳率:0%
帮助的人:6566万
展开全部
1)证明:①∵四边形ABCD是矩形,

∴AD∥BC,∴∠CAD=∠ACB,∠AEF=∠CFE,

∵EF垂直平分AC,垂足为O,∴OA=OC,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
2297865012
2011-12-04
知道答主
回答量:3
采纳率:0%
帮助的人:4984
展开全部
额,问题呢?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
南宫赤读史书
2011-12-04 · TA获得超过400个赞
知道小有建树答主
回答量:243
采纳率:0%
帮助的人:101万
展开全部
EF长为二倍根号五。你要问什么?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
农信吹3443
2011-12-15 · TA获得超过5.7万个赞
知道大有可为答主
回答量:3.4万
采纳率:0%
帮助的人:4463万
展开全部
~问题?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 3条折叠回答
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式