f`(x)=(cosx^2),求原函数f(x)
2个回答
展开全部
f'(x)=cosx^2
∫cosx^2dx=(1/2)∫cosx^2dx^2/x=(1/2)∫dsin(x^2)/x
=(1/2)sinx^2/x -(1/2)∫sinx^2d(1/x)
=(1/2)sinx^2/x+(1/4)∫sinx^2dx^2/x^3
=(1/2)sinx^2/x +(-1/4)∫dcosx^2/x^3 +(3/8)∫cosx^2dx^2/x^5
=(1/2)sinx^2/x+(-1/4)cosx^2/x^3+(3/8)sinx^2/x^5-(3*5/16)∫sinx^2dx^2/x^7
=(1/2)sinx^2/x+(-1/4)cosx^2/x^3+(1*3/8)sinx^2/x^5+(-3*5/16)cosx^2/x^7+...+F(n)
偶数项Fn=(1/2^n)*sinx^2*(1*3*..*(2n-1))
奇数项Fn=-(1/2^n)*cosx^2*(*3*..*(2n-1)
∫cosx^2dx=(1/2)∫cosx^2dx^2/x=(1/2)∫dsin(x^2)/x
=(1/2)sinx^2/x -(1/2)∫sinx^2d(1/x)
=(1/2)sinx^2/x+(1/4)∫sinx^2dx^2/x^3
=(1/2)sinx^2/x +(-1/4)∫dcosx^2/x^3 +(3/8)∫cosx^2dx^2/x^5
=(1/2)sinx^2/x+(-1/4)cosx^2/x^3+(3/8)sinx^2/x^5-(3*5/16)∫sinx^2dx^2/x^7
=(1/2)sinx^2/x+(-1/4)cosx^2/x^3+(1*3/8)sinx^2/x^5+(-3*5/16)cosx^2/x^7+...+F(n)
偶数项Fn=(1/2^n)*sinx^2*(1*3*..*(2n-1))
奇数项Fn=-(1/2^n)*cosx^2*(*3*..*(2n-1)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询