可以把 三角函数公式大全 带 图文解释的发给我吗?

 我来答
cczjkd
2011-12-04 · 超过17用户采纳过TA的回答
知道答主
回答量:92
采纳率:0%
帮助的人:53.9万
展开全部
  可以 三角函数:
  两角和公式
  sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
  cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
  tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
  cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)
  倍角公式
  tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota
  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
  sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
  cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
  sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
  tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

  半角公式
  sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
  cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
  tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
  cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))
  和差化积
  2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
  2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
  sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
  tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
  cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB
追问
我要带图文解释的!
ICEY661
2012-07-01 · TA获得超过4147个赞
知道答主
回答量:72
采纳率:0%
帮助的人:36.8万
展开全部
幂函数的图形

指数函数的图形

对数函数的图形

三角函数的图形

各三角函数值在各象限的符号

sinα·cscα cosα·secα tanα·cotα
三角函数的性质

函数 y=sinx y=cosx y=tanx y=cotx
定义域 R R {x|x∈R且x≠kπ+,k∈Z} {x|x∈R且x≠kπ,k∈Z}
值域 [-1,1]x=2kπ+ 时ymax=1x=2kπ- 时ymin=-1 [-1,1]x=2kπ时ymax=1x=2kπ+π时ymin=-1 R无最大值无最小值 R无最大值无最小值
周期性 周期为2π 周期为2π 周期为π 周期为π
奇偶性 奇函数 偶函数 奇函数 奇函数
单调性 在[2kπ-,2kπ+ ]上都是增函数;在[2kπ+ ,2kπ+π]上都是减函数(k∈Z) 在[2kπ-π,2kπ]上都是增函数;在[2kπ,2kπ+π]上都是减函数(k∈Z) 在(kπ-,kπ+)内都是增函数(k∈Z) 在(kπ,kπ+π)内都是减函数(k∈Z)
反三角函数的图形

反三角函数的性质

名称 反正弦函数 反余弦函数 反正切函数 反余切函数
定义 y=sinx(x∈〔-, 〕的反函数,叫做反正弦函数,记作x=arsiny y=cosx(x∈〔0,π〕)的反函数,叫做反余弦函数,记作x=arccosy y=tanx(x∈(- , )的反函数,叫做反正切函数,记作x=arctany y=cotx(x∈(0,π))的反函数,叫做反余切函数,记作x=arccoty
理解 arcsinx表示属于[-,]且正弦值等于x的角 arccosx表示属于[0,π],且余弦值等于x的角 arctanx表示属于(-,),且正切值等于x的角 arccotx表示属于(0,π)且余切值等于x的角
性质 定义域 [-1,1] [-1,1] (-∞,+∞) (-∞,+∞)
值域 [-,] [0,π] (-,) (0,π)
单调性 在〔-1,1〕上是增函数 在[-1,1]上是减函数 在(-∞,+∞)上是增数 在(-∞,+∞)上是减函数
奇偶性 arcsin(-x)=-arcsinx arccos(-x)=π-arccosx arctan(-x)=-arctanx arccot(-x)=π-arccotx
周期性 都不是同期函数
恒等式 sin(arcsinx)=x(x∈[-1,1])arcsin(sinx)=x(x∈[-,]) cos(arccosx)=x(x∈[-1,1]) arccos(cosx)=x(x∈[0,π]) tan(arctanx)=x(x∈R)arctan(tanx)=x(x∈(-,)) cot(arccotx)=x(x∈R)arccot(cotx)=x(x∈(0,π))
互余恒等式 arcsinx+arccosx=(x∈[-1,1]) arctanx+arccotx=(X∈R)

三角函数公式两角和公式

sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) =
tan(A-B) =
cot(A+B) =
cot(A-B) =
倍角公式

tan2A =
Sin2A=2SinA•CosA
Cos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A
三倍角公式

sin3A = 3sinA-4(sinA)3
cos3A = 4(cosA)3-3cosA
tan3a = tana·tan(+a)·tan(-a)

半角公式

sin()=
cos()=
tan()=
cot()=
tan()==
和差化积

sina+sinb=2sincos
sina-sinb=2cossin
cosa+cosb = 2coscos
cosa-cosb = -2sinsin
tana+tanb=
积化和差

sinasinb = -[cos(a+b)-cos(a-b)]
cosacosb = [cos(a+b)+cos(a-b)]
sinacosb = [sin(a+b)+sin(a-b)]
cosasinb = [sin(a+b)-sin(a-b)]
诱导公式

sin(-a) = -sina
cos(-a) = cosa
sin(-a) = cosa
cos(-a) = sina
sin(+a) = cosa
cos(+a) = -sina
sin(π-a) = sina
cos(π-a) = -cosa
sin(π+a) = -sina
cos(π+a) = -cosa
tgA=tanA =
万能公式

sina=
cosa=
tana=

其它公式

a•sina+b•cosa=×sin(a+c) [其中tanc=]
a•sin(a)-b•cos(a) = ×cos(a-c) [其中tan(c)=]
1+sin(a) =(sin+cos)2
1-sin(a) = (sin-cos)2

其他非重点三角函数

csc(a) =
sec(a) =
双曲函数

sinh(a)=
cosh(a)=
tg h(a)=
公式一

设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)= sinα
cos(2kπ+α)= cosα
tan(2kπ+α)= tanα
cot(2kπ+α)= cotα
公式二

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)= -sinα
cos(π+α)= -cosα
tan(π+α)= tanα
cot(π+α)= cotα
公式三

任意角α与 -α的三角函数值之间的关系:
sin(-α)= -sinα
cos(-α)= cosα
tan(-α)= -tanα
cot(-α)= -cotα
公式四

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)= sinα
cos(π-α)= -cosα
tan(π-α)= -tanα
cot(π-α)= -cotα
公式五

利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)= -sinα
cos(2π-α)= cosα
tan(2π-α)= -tanα
cot(2π-α)= -cotα
公式六

±α及±α与α的三角函数值之间的关系:
sin(+α)= cosα
cos(+α)= -sinα
tan(+α)= -cotα
cot(+α)= -tanα
sin(-α)= cosα
cos(-α)= sinα
tan(-α)= cotα
cot(-α)= tanα
sin(+α)= -cosα
cos(+α)= sinα
tan(+α)= -cotα
cot(+α)= -tanα
sin(-α)= -cosα
cos(-α)= -sinα
tan(-α)= cotα
cot(-α)= tanα
(以上k∈Z)
这个物理常用公式我费了半天的劲才输进来,希望对大家有用
A•sin(ωt+θ)+ B•sin(ωt+φ) =×sin
三角函数公式证明(全部)公式表达式 乘法与因式分解

a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b)(a2+ab+b2)
三角不等式

|a+b|≤|a|+|b|
|a-b|≤|a|+|b|
|a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|
-|a|≤a≤|a|
一元二次方程的解

-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a
根与系数的关系

X1+X2=-b/a
X1*X2=c/a
注:韦达定理
判别式 b2-4a=0 注:方程有相等的两实根
b2-4ac>0 注:方程有一个实根
b2-4ac<0 注:方程有共轭复数根
三角函数公式 两角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理

a/sinA=b/sinB=c/sinC=2R
注:其中 R 表示三角形的外接圆半径
余弦定理

b2=a2+c2-2accosB
注:角B是边a和边c的夹角
正切定理

[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
首朵原2372
2012-06-17 · TA获得超过5.9万个赞
知道小有建树答主
回答量:2.4万
采纳率:0%
帮助的人:3092万
展开全部
正弦(sin):角α的对边比上斜边
余弦(cos):角α的邻边比上斜边
正切(tan):角α的对边比上邻边
余切(cot):角α的邻边比上对边
正割(sec):角α的斜边比上邻边
余割(csc):角α的斜边比上对边
sin30°=1/2
sin45°=根号2/2
sin60°=根号3/2
cos30°=根号3/2
cos45°=根号2/2
cos60°=1/2
tan30°=根号3/3
tan45°=1
tan60°=根号3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
172082020
2011-12-06
知道答主
回答量:28
采纳率:0%
帮助的人:15.2万
展开全部

三角函数的公式

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
绝恋丶情殇灬
2012-08-03 · TA获得超过171个赞
知道答主
回答量:25
采纳率:0%
帮助的人:7.5万
展开全部
建议你去买一本绿卡图书,才两三块钱,物超所值,带图文的!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式