已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(—1,0)、C(0,—

已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(—1,0)、C(0,—3)两点,与x轴交于另一点B.(1)求这条抛物线所对应的函数关系式;(2)... 已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(—1,0)、C(0,—3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标;
(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90°的点P的坐标
能不能说下为什么M在直线BC
展开
包公阎罗
推荐于2016-12-01 · TA获得超过1.8万个赞
知道大有可为答主
回答量:4151
采纳率:0%
帮助的人:2028万
展开全部
由于对称轴为x=1
所以可设y=a(x-1)²+b
把点(-1,0)(0,-3)代入
4a+b=0
a+b=-3
解得a=1 b=-4 y=(x-1)²-4
2 (0,-3) 关于x=1 的对称点为(2,-3)
连接点(-1,0) 和(2,-3) 与x=1的交点即为M 使得|MA|+|MC|最小
y/(x+1)=(y+3)/(x-2) x=1 交点为 (1,-2) 所以点M为(1,-2)
3 y=(x-1)²-4=(x-3)(x+1)
当y=0 (x-3)(x+1)=0
x=3 或x=-1 所以点B为(3,0)
设PC斜率为k 则y=kx-3
PB 为 y=-(x-3)/k
y=kx-3 当x=1 y=k-3 y=-(x-3)/k 当x=1 y=2/k=k-3
解得k=(3±根号下17)/2
y=4/(3±根号下17)
所以点P为 (1,4/(3+根号下17)或(1,4/(3-根号下17)
木槿丶Sukfly
2013-01-06
知道答主
回答量:19
采纳率:0%
帮助的人:2.3万
展开全部
解:(1)∵抛物线的对称轴为x=1,且A(-1,0),
∴B(3,0);
可设抛物线的解析式为y=a(x+1)(x-3),由于抛物线经过C(0,-3),
则有:a(0+1)(0-3)=-3,a=1;
∴y=(x+1)(x-3)=x2-2x-3;

(2)由于A、B关于抛物线的对称轴直线x=1对称,
那么M点为直线BC与x=1的交点;
由于直线BC经过C(0,-3),可设其解析式为y=kx-3,
则有:3k-3=0,k=1;
∴直线BC的解析式为y=x-3;
当x=1时,y=x-3=-2,
即M(1,-2);

(3)设经过C点且与直线BC垂直的直线为直线l,作PD⊥y轴,垂足为D;
∵OB=OC=3,
∴CD=DP=1,OD=OC+CD=4,
∴P(1,-4).
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式