已知关于x的一元二次方程8X^2+6kx+2k+1=0的实根是sinθ和cosθ。 求k的值和tanθ的值(sinθ>cosθ)

qsmm
2011-12-04 · TA获得超过267万个赞
知道顶级答主
回答量:28.3万
采纳率:90%
帮助的人:12.8亿
展开全部
解:注意到由韦达定理,
sinθcosθ=(2k+1)/8,……①
sinθ+cosθ=-3k/4……②
②平方得:1+2sinθcosθ=9k²/16,把①代入解得:
k=2或-10/9
又∵Δ≥0,得:9k²-16k-8≥0,
检验得k=2舍去,k=-10/9符合;
可得sinθcosθ=-11//72……③
sinθ+cosθ=5/6……④
∵(sinθ-cosθ)²=1-2sinθcosθ=47/36
∴sinθ-cosθ=-(√47)/6或(√47)/6……⑤
由④⑤两式可分别解得两组解:
sinθ=(5+√47)/12 和cosθ=(5-√47)/12

cosθ=(5+√47)/12 和sinθ=(5-√47)/12
于是有:
tanθ=(36+5√47)/11或(36-5√47)/11
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式