
已知tanα=2/3,求[(cosα-sinα)/(cosα+sinα)]+[(cosα+sinα)/(cosα-sinα)]的值
2个回答
展开全部
[(cosα-sinα)/(cosα+sinα)]+[(cosα+sinα)/(cosα-sinα)]
=[(cosα/cosα-sinα/cosα)/(cosα/cosα+sinα/cosα)]+[(cosα/cosα+sinα/cosα)/(cosα/cosα-sinα/cosα)]
=[(1-tanα)/(1+tanα)]+[(1+tanα)/(1-tanα)]
=[(1-2/3)/(1+2/3)]+[(1+2/3)/(1-2/3)]
=(1/3)/(5/3)+(5/3)/(1/3)
=1/5+5
=26/5
=[(cosα/cosα-sinα/cosα)/(cosα/cosα+sinα/cosα)]+[(cosα/cosα+sinα/cosα)/(cosα/cosα-sinα/cosα)]
=[(1-tanα)/(1+tanα)]+[(1+tanα)/(1-tanα)]
=[(1-2/3)/(1+2/3)]+[(1+2/3)/(1-2/3)]
=(1/3)/(5/3)+(5/3)/(1/3)
=1/5+5
=26/5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询