高数不定积分题
∫dx/(x²+a²)^n=x/[2(n-1)a²(x²+a²)^n-1]+[(2n-3)/(2(n-1)a²...
∫dx/(x²+a²)^n=x/[2(n-1)a²(x²+a²)^n-1]+[(2n-3)/(2(n-1)a²]∫dx/(x²+a²)^n-1
展开
展开全部
像∫dx/(x²+a²)^n的积分要用递推关系求解
设In=∫dx/(x²+a²)²
则I(n+1)=x/[2na²(x²+a²)^n]+(2n-1)/2na²In
而I1=∫dx/(x²+a²)=1/aarctan(x/a)+c
设In=∫dx/(x²+a²)²
则I(n+1)=x/[2na²(x²+a²)^n]+(2n-1)/2na²In
而I1=∫dx/(x²+a²)=1/aarctan(x/a)+c
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫dx/(x^2+a^2)^(n-1)=x/(x^2+a^2)^(n-1)-∫xd(1/(x^2+a^2)^(n-1))
=x/(x^2+a^2)^(n-1)+(n-1)∫2x^2dx/(x^2+a^2)/x^n
=x/(x^2+a^2)^(n-1)+2(n-1)∫dx/(x^2+a^2)^(n-1) -2(n-1)∫a^2dx/(x^2+a^2)^n
(3-2n)∫dx/(x^2+a^2)^(n-1)=x/(x^2+a^2)^(n-1) -2(n-1)a^2∫dx/(x^2+a^2)^n
(2n-3)/((2n-1)a^2)∫dx/(x^2+a^2)^(n-1)=∫dx/(x^2+a^2)^n- (1/(2(n-1)a^2))*x/(x^2+a^2)^(n-1)
∫dx/(x^2+a^2)^n= (1/(2(n-1)a^2))*x/(x^2+a^2)^(n-1)+∫(2n-3)/((2n-1)a^2)∫dx/(x^2+a^2)^(n-1)
=x/(x^2+a^2)^(n-1)+(n-1)∫2x^2dx/(x^2+a^2)/x^n
=x/(x^2+a^2)^(n-1)+2(n-1)∫dx/(x^2+a^2)^(n-1) -2(n-1)∫a^2dx/(x^2+a^2)^n
(3-2n)∫dx/(x^2+a^2)^(n-1)=x/(x^2+a^2)^(n-1) -2(n-1)a^2∫dx/(x^2+a^2)^n
(2n-3)/((2n-1)a^2)∫dx/(x^2+a^2)^(n-1)=∫dx/(x^2+a^2)^n- (1/(2(n-1)a^2))*x/(x^2+a^2)^(n-1)
∫dx/(x^2+a^2)^n= (1/(2(n-1)a^2))*x/(x^2+a^2)^(n-1)+∫(2n-3)/((2n-1)a^2)∫dx/(x^2+a^2)^(n-1)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你是要求什么东西?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询