设函数f(x)=lg[a^2x+(ab)^x-b^2x+1](a>0 b>0) 求使f(x)>0的x的f取值范围

朝海致6240
2011-12-06 · TA获得超过5.7万个赞
知道大有可为答主
回答量:4万
采纳率:0%
帮助的人:5364万
展开全部
lg[a^2x+(ab)^x-b^2x+1] > 0 则
a^2x+(ab)^x-b^2x+1 > 1
a^2x+(ab)^x-b^2x > 0
同时除以 b^2x
(a/b)^x^2 + (a/b)^x -1 > 0
令(a/b)^x = t
t^2 + t -1 > 0
t < (-1 -√5)/2 或 t > (-1 +√5)/2
因为 a b 都是正数,所以 (a/b)^x >0 (指数函数非负)
所以 (a/b)^x > (√5 - 1 )/2
根据指数函数的特性
a > b 时 是增函数,x > log (a/b) (√5 - 1 )/2
a/b 是底
a=b 1恒大于 (√5 - 1 )/2 x 取任意值
a < b 时 是减函数 x < log (a/b) (√5 - 1 )/2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式