初三三角形几何题

已知四边形ABCD,E为AD中点,F为CD中点,连接AC,BE交AC于G,BF交AC于H,AG=GH=HC.求证:四边形ABCD为平行四边形.... 已知四边形ABCD,E为AD中点,F为CD中点,连接AC,BE交AC于G,BF交AC于H,AG=GH=HC.求证:四边形ABCD为平行四边形. 展开
№旋舞¤
2007-09-23
知道答主
回答量:33
采纳率:0%
帮助的人:0
展开全部
连接EF,利用中位线证得EF平行等于1/2的AC,因为AG=GH=HC,所以GH/EF=2/3,AH/HC=2/1,再由平行得BH/BF=2/3,即BH/HF=2/1,∵∠AHB=∠FHC,∴AHB∽FHC∴AB/CF=AH/HC=2/1,AB‖DC∵DF=FC∴AB=CD,∴为平行四边形。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式