如图,已知△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,点E是边AC的中点,DE=2cm,那么AC=-

写完整即可... 写完整即可 展开
匿名用户
2011-12-06
展开全部
1)因为CD⊥AB,垂足为点D,E是AC的中点
所以DE是直角三角形斜边AC的中线,
所以DE=AC/2=EC
所以∠EDC=∠ECD,
所以∠EDC+∠CDB=∠ECD+∠ECF
即∠FCD=∠FDB
又∠F为公共角
所以△BDF∽△DCF
2)因为tanB=1/2,
所以CD/BD=1/2
由△BDF∽△DCF得BF/DF=BD/DC=2,
所以BF=2DF
设BC=2a,则AC=a,CE=DE=a/2
在直角三角形ECF中,FC=√[(10/3)^2-(a/2)^2]
BF=√[(10/3)^2-(a/2)^2]+2a
DF=EF+DE=10/3+a/2
由BF=2DF,得,
√[(10/3)^2-(a/2)^2]+2a=2(3/10+a/2)
解得a1=4,a2=20/3
所以AC=4,20/3

参考资料: 不确定。。。。。

577079432
2011-12-19
知道答主
回答量:1
采纳率:0%
帮助的人:1686
展开全部
因为CD⊥AB,垂足为点D,E是AC的中点
所以DE是直角三角形斜边AC的中线,
所以DE=AC/2=EC
所以∠EDC=∠ECD,
所以∠EDC+∠CDB=∠ECD+∠ECF
即∠FCD=∠FDB
又∠F为公共角
所以△BDF∽△DCF
2)因为tanB=1/2,
所以CD/BD=1/2
由△BDF∽△DCF得BF/DF=BD/DC=2,
所以BF=2DF
设BC=2a,则AC=a,CE=DE=a/2
在直角三角形ECF中,FC=√[(10/3)^2-(a/2)^2]
BF=√[(10/3)^2-(a/2)^2]+2a
DF=EF+DE=10/3+a/2
由BF=2DF,得,
√[(10/3)^2-(a/2)^2]+2a=2(3/10+a/2)
解得a1=4,a2=20/3
所以AC=4,20/3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2011-12-08
展开全部
∵CD⊥AB
∴△ADC为直角三角形
∵点E是边AC的中点
∴E为直角三角形ADC的外心
∴AE,DE均为其外接圆半径
∴AC=2AE=2DE=4
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式