什么是函数?
5个回答
展开全部
函数的定义
如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则总有确定的数值与它对应,则称y是x的函数。变量x的变化范围叫做这个函数的定义域。通常x叫做自变量,y叫做因变量。
注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示.这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的.
注:如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。这里我们只讨论单值函数。
函数的表示
a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。
例:直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2
b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。
例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。
c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。一般用横坐标表示自变量,纵坐标表示因变量。
例:直角坐标系中,半径为r、圆心在原点的圆用图示法表示为:
如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则总有确定的数值与它对应,则称y是x的函数。变量x的变化范围叫做这个函数的定义域。通常x叫做自变量,y叫做因变量。
注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示.这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的.
注:如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。这里我们只讨论单值函数。
函数的表示
a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。
例:直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2
b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。
例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。
c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。一般用横坐标表示自变量,纵坐标表示因变量。
例:直角坐标系中,半径为r、圆心在原点的圆用图示法表示为:
Sievers分析仪
2024-12-30 广告
2024-12-30 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
两堆数,A中任意一个,B中只有唯一一个与之相对应,加以映射关系,就是函数。
准确说是,两个集合,集合A中任意一个数在集合B中都有唯一一个数与之相对应,加以映射关系,就是函数。判定是否是函数的图像,只需要画任意一条与X轴垂直的直线,与函数图像只有一个交点的就是函数,反之则不是。
意思就是,一个X对应一个 Y,是函数;两个X对应一个Y,也是函数,N个X对应一个Y,都可以叫函数,但是如果一个X对应两个Y,那就不是函数了,希望对你能有所帮助!!
准确说是,两个集合,集合A中任意一个数在集合B中都有唯一一个数与之相对应,加以映射关系,就是函数。判定是否是函数的图像,只需要画任意一条与X轴垂直的直线,与函数图像只有一个交点的就是函数,反之则不是。
意思就是,一个X对应一个 Y,是函数;两个X对应一个Y,也是函数,N个X对应一个Y,都可以叫函数,但是如果一个X对应两个Y,那就不是函数了,希望对你能有所帮助!!
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
函数(function)表示每个输入值对应唯一输出值的一种对应关系。函数f中对应输入值的输出值x的标准符号为f(x)。包含某个函数所有的输入值的集合被称作这个函数的定义域,包含所有的输出值的集合被称作值域。若先定义映射的概念,可以简单定义函数为,定义在非空数集之间的映射称为函数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2019-04-26 · 移动学习,职达未来!
环球网校
环球网校成立于2003年,十多年来坚持“以学员为中心、以质量为本、以创新驱动”的经营理念,现已发展成为集考试研究、网络课程、直播课堂、题库、答疑、模考、图书、学员社区等为一体的规模化学习平台
向TA提问
关注
展开全部
23年二级建造师-新考季备考指导课
精编干货 高效通关
¥1元/科
23年一级建造师-备考资料大礼包
备考提速 精华知识点
¥1元/科
2021一级造价师-密训抢分
密训抢分冲刺
¥0元
2021一消名师100节精品课
超值体验,轻松取证
¥0元
2021年中级经济师-强化进阶体验课
知己知彼,三步破局
¥1元
2022年高级经济师-基础重塑课
基础重塑 高效备考
¥0元
2021健康管理师超值教程大礼包
教程课题一站式配齐
¥39元
四级人力资源管理师-备考指导
轻松入门人力资源师
¥0元
查
看
更
多
- 在线客服
-
官方服务
- 官方网站
- 精华资料
- 免费直播课
- 免费领课
- 领优惠券
- 考试日历
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |