高数上,求积分问题
2个回答
展开全部
分子上加x减x,拆为两个积分,后一个积分再拆为两个,前两个很简单,后一个稍烦些,
∫(x^3+1)/[(x^2+1)^2] dx
=∫(x^3+1+x-x)/[(x^2+1)^2] dx
=∫(x^3+x)/[(x^2+1)^2] dx-∫x/[(x^2+1)^2] dx+∫1/[(x^2+1)^2] dx
=∫ x/(x^2+1)dx-∫x/[(x^2+1)^2] dx+∫1/[(x^2+1)^2] dx
=(1/2)∫ 1/(x^2+1)d(x^2)-(1/2)∫1/[(x^2+1)^2] d(x^2)+∫1/[(x^2+1)^2] dx
=(1/2)ln(x^2+1)+(1/2)1/(x^2+1)+∫1/[(x^2+1)^2] dx
第三个积分计算如下
x=tanθ,dx=sec²θdθ,sinθ=x/√(1+x²),cosθ=1/√(1+x²)
∫1/(1+x²)² dx
= ∫1/sec⁴θ * sec²θ dθ
= ∫cos²θ dθ
= (1/2)∫(1+cos2θ) dθ
= (1/2)θ + (1/2)sinθcosθ + C
= (1/2)[arctanx + x/(1+x²)] + C
有不明白请追问
∫(x^3+1)/[(x^2+1)^2] dx
=∫(x^3+1+x-x)/[(x^2+1)^2] dx
=∫(x^3+x)/[(x^2+1)^2] dx-∫x/[(x^2+1)^2] dx+∫1/[(x^2+1)^2] dx
=∫ x/(x^2+1)dx-∫x/[(x^2+1)^2] dx+∫1/[(x^2+1)^2] dx
=(1/2)∫ 1/(x^2+1)d(x^2)-(1/2)∫1/[(x^2+1)^2] d(x^2)+∫1/[(x^2+1)^2] dx
=(1/2)ln(x^2+1)+(1/2)1/(x^2+1)+∫1/[(x^2+1)^2] dx
第三个积分计算如下
x=tanθ,dx=sec²θdθ,sinθ=x/√(1+x²),cosθ=1/√(1+x²)
∫1/(1+x²)² dx
= ∫1/sec⁴θ * sec²θ dθ
= ∫cos²θ dθ
= (1/2)∫(1+cos2θ) dθ
= (1/2)θ + (1/2)sinθcosθ + C
= (1/2)[arctanx + x/(1+x²)] + C
有不明白请追问
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询