若数列{an}的通项公式为an=1+2+3+…+n,则an前n项和公式Sn是多少

chinese_box
2011-12-07 · TA获得超过1024个赞
知道小有建树答主
回答量:202
采纳率:0%
帮助的人:352万
展开全部
an前n项和中含有n个1,n-1个2,...,1个n
=n*1+(n-1)*2+(n-2)*3+...+2*(n-1)+n*1
=n(1+...+n)-[1*2+2*3+...+(n-1)n]
=n*n*(n-1)/2-[n(n+1)(2n+1)/6-1-(n+2)(n-1)/2]
=(n^3+3n^2+2n)/6
希望对你有帮助,望采纳,谢谢
jlp1202
2011-12-07 · 超过24用户采纳过TA的回答
知道答主
回答量:58
采纳率:0%
帮助的人:63.7万
展开全部
an=n(n+1)/2=(n^2+n)/2,所以Sn=1/2(1^2+1+2^2+2+…+n^2+n)=1/2(1^2+2^2+3^2+…+n^2+1+2+3+…+n)=1/2[n(n+1)(2n+1)/6+n(n+1)/2]你再化简就是
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友8fe30fd
2011-12-07 · TA获得超过115个赞
知道答主
回答量:78
采纳率:0%
帮助的人:47.6万
展开全部
an=1+2+3+…+n=n(1+n)╱2,则a1=1,Sn=n(a1+an)╱2,将a1和an代入上式得Sn=(n^2+n^3+2n)╱4。手机打字辛苦,望采纳,非常感谢……
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2011-12-07
展开全部
an=(1+n )n /2
sn=a1+a2+…+an
=1/2*[(1+n )n /2+1*1+2*2+3*3+…+n *n ]
书上有1*1+2*2+…+n *n的公式的吧
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
lzq69
2011-12-07 · TA获得超过5141个赞
知道大有可为答主
回答量:2499
采纳率:66%
帮助的人:741万
展开全部
an=1+2+3+…+n=n*(n+1)/2,
Sn=a1+a2+……+an
=1/2(1^2+1+2^2+2+3^2+3+......+n^2+n)
=1/2<(1^2+2^2+...+n^2)+(1+2+3+...+N)>
=1/2*<(1/6*n(n+1)(2n+1)+1/2*n(n+1)>
=1/6*n(n+1)(n+2)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式