我要一份高等数学公式啊!要word文档形式啊!不要链接啊!谢谢各位!着急啊!

dczx_007
2011-12-07 · TA获得超过2万个赞
知道大有可为答主
回答量:1771
采纳率:0%
帮助的人:804万
展开全部

高等数学公式用word文档形式的在百度里发过来你根本就没法看的,这一点你清楚的,如下图:只有两种方法(1)用QQ发离线文件,

          (2)上传图片形式,如下图所示,比较清晰。

word文档形式如下: 

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b 

|a-b|≥|a|-|b| -|a|≤a≤|a|   

一元二次方程的解:X= -b+√(b^2-4ac)/2a     X=-b-√(b^2-4ac)/2a   

根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理 

判别式 b^2-4aC=0  注:方程有相等的两实根 

b^2-4ac>0   注:方程有一个实根 

b^2-4ac<0   注:方程有共轭复数根 

三角函数公式   

两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA 

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB 

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) 

tg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 

倍角公式 tan^2A=2tanA/(1-tan^2A) ctg^2A=(ctg^2A-1)/2ctga 

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 

半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) 

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) 

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) 

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) 

和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) 

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) 

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB 

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 

某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n*2 

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 

13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 

正弦定理  a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 

余弦定理  b2=a2+c2-2accosB 注:角B是边a和边c的夹角 

圆的标准方程    (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 

圆的一般方程  x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py 

直棱柱侧面积  S=c*h 斜棱柱侧面积 S=c'*h   

正棱锥侧面积  S=1/2c*h' 正棱台侧面积  S=1/2(c+c')h'   

圆台侧面积  S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2   

圆柱侧面积  S=c*h=2pi*h 圆锥侧面积  S=1/2*c*l=pi*r*l   

弧长公式     l=a*r a是圆心角的弧度数r >0 扇形面积公式     s=1/2*l*r 

锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h   

斜棱柱体积     V=S'L       注:其中,S'是直截面面积, L是侧棱长  

柱体体积公式 ;V=s*h 圆柱体     V=pi*r2h  

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 

余弦定理 b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角 

圆的标准方程 (x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标  

圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0 

抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py 

直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h 

正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h' 

圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2 

圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l 

弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r 

锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h  

斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长 

柱体体积公式 V=s*h 圆柱体 V=pi*r2h

倍角公式 

tan2A=2tanA/[1-(tanA)^2] 

cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2 

半角公式 

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) 

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) 

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) 

cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))  

和差化积 

2sinAcosB=sin(A+B)+sin(A-B) 

2cosAsinB=sin(A+B)-sin(A-B) ) 

2cosAcosB=cos(A+B)-sin(A-B) 

-2sinAsinB=cos(A+B)-cos(A-B) 

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 

cosA+cosB=2cos((A+B)/2)sin((A-B)/2) 

tanA+tanB=sin(A+B)/cosAcosB 

某些数列前n项和 

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 

1+3+5+7+9+11+13+15+…+(2n-1)=n2  

2+4+6+8+10+12+14+…+(2n)=n(n+1) 5 

1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6 

1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4 

1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

常用导数公式

1.y=c(c为常数) y'=0 

2.y=x^n y'=nx^(n-1) 

3.y=a^x y'=a^xlna 

y=e^x y'=e^x 

4.y=logax y'=logae/x 

y=lnx y'=1/x 

5.y=sinx y'=cosx 

6.y=cosx y'=-sinx 

7.y=tanx y'=1/cos^2x 

8.y=cotx y'=-1/sin^2x 

9.y=arcsinx y'=1/√1-x^2 

10.y=arccosx y'=-1/√1-x^2 

11.y=arctanx y'=1/1+x^2 

12.y=arccotx y'=-1/1+x^2

听雨楼之铁血
2011-12-07 · TA获得超过602个赞
知道小有建树答主
回答量:543
采纳率:0%
帮助的人:352万
展开全部
高中数学常用公式及常用结论
1. 元素与集合的关系, .
2.德摩根公式
3.包含关系
4.容斥原理
5.集合 的子集个数共有 个;真子集有 –1个;非空子集有 –1个;非空的真子集有 –2个.
6.二次函数的解析式的三种形式
(1)一般式 ;
(2)顶点式 ;
(3)零点式 .
7.解连不等式 常有以下转化形式
8.方程 在 上有且只有一个实根,与 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程 有且只有一个实根在 内,等价于 ,或 且 ,或 且 .
9.闭区间上的二次函数的最值
二次函数 在闭区间 上的最值只能在 处及区间的两端点处取得,具体如下:
(1)当a>0时,若 ,则 ;
, , .
(2)当a<0时,若 ,则 ,若 ,则 , .
10.一元二次方程的实根分布
依据:若 ,则方程 在区间 内至少有一个实根 .
设 ,则
(1)方程 在区间 内有根的充要条件为 或 ;
(2)方程 在区间 内有根的充要条件为 或 或 或 ;
(3)方程 在区间 内有根的充要条件为 或 .
11.定区间上含参数的二次不等式恒成立的条件依据
(1)在给定区间 的子区间 (形如 , , 不同)上含参数的二次不等式 ( 为参数)恒成立的充要条件是 .
(2)在给定区间 的子区间上含参数的二次不等式 ( 为参数)恒成立的充要条件是 .
(3) 恒成立的充要条件是 或 .
12.真值表
p q 非p p或q p且q
真 真 假 真 真
真 假 假 真 假
假 真 真 真 假
假 假 真 假 假
13.常见结论的否定形式
原结论 反设词 原结论 反设词
是 不是 至少有一个 一个也没有
都是 不都是 至多有一个 至少有两个
大于 不大于 至少有 个
至多有( )个

小于 不小于 至多有 个
至少有( )个

对所有 ,
成立 存在某 ,
不成立




对任何 ,
不成立 存在某 ,
成立




14.四种命题的相互关系

原命题       互逆       逆命题
若p则q               若q则p
       互       互
  互        为   为        互
  否                     否
           逆   逆           
         否       否
否命题               逆否命题   
若非p则非q    互逆      若非q则非p

15.充要条件
(1)充分条件:若 ,则 是 充分条件.
(2)必要条件:若 ,则 是 必要条件.
(3)充要条件:若 ,且 ,则 是 充要条件.
注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.
16.函数的单调性
(1)设 那么
上是增函数;
上是减函数.
(2)设函数 在某个区间内可导,如果 ,则 为增函数;如果 ,则 为减函数.
17.如果函数 和 都是减函数,则在公共定义域内,和函数 也是减函数; 如果函数 和 在其对应的定义域上都是减函数,则复合函数 是增函数.
18.奇偶函数的图象特征
奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.
19.若函数 是偶函数,则 ;若函数 是偶函数,则 .
20.对于函数 ( ), 恒成立,则函数 的对称轴是函数 ;两个函数 与 的图象关于直线 对称.
21.若 ,则函数 的图象关于点 对称; 若 ,则函数 为周期为 的周期函数.
22.多项式函数 的奇偶性
多项式函数 是奇函数 的偶次项(即奇数项)的系数全为零.
多项式函数 是偶函数 的奇次项(即偶数项)的系数全为零.
23.函数 的图象的对称性
(1)函数 的图象关于直线 对称
.
(2)函数 的图象关于直线 对称
.
24.两个函数图象的对称性
(1)函数 与函数 的图象关于直线 (即 轴)对称.
(2)函数 与函数 的图象关于直线 对称.
(3)函数 和 的图象关于直线y=x对称.
25.若将函数 的图象右移 、上移 个单位,得到函数 的图象;若将曲线 的图象右移 、上移 个单位,得到曲线 的图象.
26.互为反函数的两个函数的关系
.
27.若函数 存在反函数,则其反函数为 ,并不是 ,而函数 是 的反函数.
28.几个常见的函数方程
(1)正比例函数 , .
(2)指数函数 , .
(3)对数函数 , .
(4)幂函数 , .
(5)余弦函数 ,正弦函数 , ,
.
29.几个函数方程的周期(约定a>0)
(1) ,则 的周期T=a;
(2) ,
或 ,
或 ,
或 ,则 的周期T=2a;
(3) ,则 的周期T=3a;
(4) 且 ,则 的周期T=4a;
(5)
,则 的周期T=5a;
(6) ,则 的周期T=6a.
30.分数指数幂
(1) ( ,且 ).
(2) ( ,且 ).
31.根式的性质
(1) .
(2)当 为奇数时, ;
当 为偶数时, .
32.有理指数幂的运算性质
(1) .
(2) .
(3) .
注: 若a>0,p是一个无理数,则ap表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.
33.指数式与对数式的互化式
.
34.对数的换底公式
( ,且 , ,且 , ).
推论 ( ,且 , ,且 , , ).
35.对数的四则运算法则
若a>0,a≠1,M>0,N>0,则
(1) ;
(2) ;
(3) .
36.设函数 ,记 .若 的定义域为 ,则 ,且 ;若 的值域为 ,则 ,且 .对于 的情形,需要单独检验.
37. 对数换底不等式及其推广
若 , , , ,则函数
(1)当 时,在 和 上 为增函数.
, (2)当 时,在 和 上 为减函数.
推论:设 , , ,且 ,则
(1) .
(2) .
38. 平均增长率的问题
如果原来产值的基础数为N,平均增长率为 ,则对于时间 的总产值 ,有 .
39.数列的同项公式与前n项的和的关系
( 数列 的前n项的和为 ).
40.等差数列的通项公式

其前n项和公式为

.
41.等比数列的通项公式

其前n项的和公式为

或 .
42.等比差数列 : 的通项公式为

其前n项和公式为
.
43.分期付款(按揭贷款)
每次还款 元(贷款 元, 次还清,每期利率为 ).
44.常见三角不等式
(1)若 ,则 .
(2) 若 ,则 .
(3) .
45.同角三角函数的基本关系式
, = , .
46.正弦、余弦的诱导公式

47.和角与差角公式
;
;
.
(平方正弦公式);
.
= (辅助角 所在象限由点 的象限决定, ).
48.二倍角公式
.
.
.
49. 三倍角公式
.
. .
50.三角函数的周期公式
函数 ,x∈R及函数 ,x∈R(A,ω, 为常数,且A≠0,ω>0)的周期 ;函数 , (A,ω, 为常数,且A≠0,ω>0)的周期 .
51.正弦定理
.
52.余弦定理
;
;
.
53.面积定理
(1) ( 分别表示a、b、c边上的高).
(2) .
(3) .
54.三角形内角和定理
在△ABC中,有
.
55. 简单的三角方程的通解
.
.
.
特别地,有
.
.
.
56.最简单的三角不等式及其解集
.
.
.
.
.
.
57.实数与向量的积的运算律
设λ、μ为实数,那么
(1) 结合律:λ(μa)=(λμ)a;
(2)第一分配律:(λ+μ)a=λa+μa;
(3)第二分配律:λ(a+b)=λa+λb.
58.向量的数量积的运算律:
(1) a•b= b•a (交换律);
(2)( a)•b= (a•b)= a•b= a•( b);
(3)(a+b)•c= a •c +b•c.
59.平面向量基本定理
如果e1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e1+λ2e2.
不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底.
60.向量平行的坐标表示
设a= ,b= ,且b 0,则a b(b 0) .
53. a与b的数量积(或内积)
a•b=|a||b|cosθ.
61. a•b的几何意义
数量积a•b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.
62.平面向量的坐标运算
(1)设a= ,b= ,则a+b= .
(2)设a= ,b= ,则a-b= .
(3)设A ,B ,则 .
(4)设a= ,则 a= .
(5)设a= ,b= ,则a•b= .
63.两向量的夹角公式
(a= ,b= ).
64.平面两点间的距离公式
=
(A ,B ).
65.向量的平行与垂直
设a= ,b= ,且b 0,则
A||b b=λa .
a b(a 0) a•b=0 .
66.线段的定比分公式
设 , , 是线段 的分点, 是实数,且 ,则

( ).
67.三角形的重心坐标公式
△ABC三个顶点的坐标分别为 、 、 ,则△ABC的重心的坐标是 .
68.点的平移公式
.
注:图形F上的任意一点P(x,y)在平移后图形 上的对应点为 ,且 的坐标为 .
69.“按向量平移”的几个结论
(1)点 按向量a= 平移后得到点 .
(2) 函数 的图象 按向量a= 平移后得到图象 ,则 的函数解析式为 .
(3) 图象 按向量a= 平移后得到图象 ,若 的解析式 ,则 的函数解析式为 .
(4)曲线 : 按向量a= 平移后得到图象 ,则 的方程为 .
(5) 向量m= 按向量a= 平移后得到的向量仍然为m= .
70. 三角形五“心”向量形式的充要条件
设 为 所在平面上一点,角 所对边长分别为 ,则
(1) 为 的外心 .
(2) 为 的重心 .
(3) 为 的垂心 .
(4) 为 的内心 .
(5) 为 的 的旁心 .
71.常用不等式:
(1) (当且仅当a=b时取“=”号).
(2) (当且仅当a=b时取“=”号).
(3)
(4)柯西不等式

(5) .
72.极值定理
已知 都是正数,则有
(1)若积 是定值 ,则当 时和 有最小值 ;
(2)若和 是定值 ,则当 时积 有最大值 .
推广 已知 ,则有
(1)若积 是定值,则当 最大时, 最大;
当 最小时, 最小.
(2)若和 是定值,则当 最大时, 最小;
当 最小时, 最大.
73.一元二次不等式 ,如果 与 同号,则其解集在两根之外;如果 与 异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.

.
74.含有绝对值的不等式
当a> 0时,有
.
或 .
75.无理不等式
(1) .
(2) .
(3) .
76.指数不等式与对数不等式
(1)当 时,
;
.
(2)当 时,
;

77.斜率公式
( 、 ).
78.直线的五种方程
(1)点斜式 (直线 过点 ,且斜率为 ).
(2)斜截式 (b为直线 在y轴上的截距).
(3)两点式 ( )( 、 ( )).
(4)截距式 ( 分别为直线的横、纵截距, )
我先说的是。。。这个在解答里面,由于格式限制,不可能把公式都写出来,但是我有word文档,你给我个邮箱吧。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友6bed76d
2011-12-07
知道答主
回答量:22
采纳率:0%
帮助的人:6.3万
展开全部
给我你的邮箱,我晚上给你发过去
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式