解一个简单的微分方程

vf(t)+(l+vt)f(t)'=0(其中v,l是常数)... vf(t)+(l+vt)f(t)'=0 (其中v,l是常数) 展开
laoye20011
2011-12-07 · TA获得超过5558个赞
知道大有可为答主
回答量:1118
采纳率:100%
帮助的人:538万
展开全部
解:
原为分方程可化为:
vf(t)+vt)f'(t)+f'(t)=0
==> v(t*f(t))' + f'(t) = 0
==> 这是完全微分的形式,对各项积分得:
v*t*f(t) + f(t) = c
==> f(t) = c/(1+vt)
将原函数代入微分方程,检验成立
微分方程的解为:
f(t) = c/(1+vt)
夏迪是
2011-12-08
知道答主
回答量:80
采纳率:0%
帮助的人:29.5万
展开全部
解:
原为分方程可化为:
vf(t)+vt)f'(t)+f'(t)=0
==> v(t*f(t))' + f'(t) = 0
==> 这是完全微分的形式,对各项积分得:
v*t*f(t) + f(t) = c
==> f(t) = c/(1+vt)
将原函数代入微分方程,检验成立
微分方程的解为:
f(t) = c/(1+vt) vf(t)+(1+vt)f'(t)=0
vf(t)+(1+vt)df(t)/dt=0
vf(t)dt+vtdf(t)+df(t)=0
vd[ t*f(t)] +df(t)=0
dv*tf(t)+f(t)=0
vtf(t)+f(t)=C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
drug2009
2011-12-07 · TA获得超过1.4万个赞
知道大有可为答主
回答量:6644
采纳率:100%
帮助的人:2788万
展开全部
vf(t)+(1+vt)f'(t)=0
vf(t)+(1+vt)df(t)/dt=0
vf(t)dt+vtdf(t)+df(t)=0
vd[ t*f(t)] +df(t)=0
dv*tf(t)+f(t)=0
vtf(t)+f(t)=C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式