
证明:方程信x^3-3x+1=0在区间[0,1]上不可能有两个不同的根?
3个回答
展开全部
f(x)=x^3-3x+1;
f(0)>0;
f(1)<0;
在[0,1]上只能有1个或3个根;
不可能有三个根,因为f(2)>0必有一根在[1,2];且3次方程至多三个根。
故方程在[0,1]上只能有1个根
f(0)>0;
f(1)<0;
在[0,1]上只能有1个或3个根;
不可能有三个根,因为f(2)>0必有一根在[1,2];且3次方程至多三个根。
故方程在[0,1]上只能有1个根
展开全部
假设方程在区间[0,1]上有两个不同的根a,b则a^3-3a+1=0(1),b^3-3b+1=0(2)(1)-(2),得(a^3-b^3)-3(a-b)=0(a-b)(a^2+b^2+ab-3)=0因为a!=b,所以a^2+b^2+ab-3=0又因为0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
令f(x)=x^3-3x+1
f'(x)=3x^2-3
令f'(x)=0
x=1 x=-1
f(x) 在[-1,1]区间上是单增函数
最多只能与X轴有一个交点
f'(x)=3x^2-3
令f'(x)=0
x=1 x=-1
f(x) 在[-1,1]区间上是单增函数
最多只能与X轴有一个交点
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询