数学。
数学[英语:mathematics,源自古希腊语μθημα(máthēma);经常被缩写为math或maths],是研究数量、结构、变化、空间以及信息等概念的一门学科。
数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。
在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。
数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:mathematics或maths),其英语源自于古希腊语的μθημα(máthēma),有学习、学问、科学之意。古希腊学者视其为哲学之起点,“学问的基础”。另外,还有个较狭隘且技术性的意义——“数学研究”。即使在其语源内,其形容词意义凡与学习有关的,亦被用来指数学。
其在英语的复数形式,及在法语中的复数形式加-es,成mathématiques,可溯至拉丁文的中性复数(mathematica),由西塞罗译自希腊文复数τα μαθηματικά(ta mathēmatiká)。
而且具有传递性,所以
向量组1可由向量组2线性表示,2可由3表示,那么1可由3表示.
向量组B=(β1,β2,……,βm)能由向量组A=(α1,α2,……,αm)线性表示的充要条件是矩阵A=(α1,α2,……,αm)的秩等于矩阵(α1,α2,……,αm,B)的秩。
向量组B能由向量组A线性表示,则向量组B的秩不大于向量A的秩。反之不一定成立。
一个向量可由向量组中其余向量线性表示,前提是这个向量组线性相关。线性相关的向量组中并不是任一向量都可由其余向量线性表示;但当其余向量线性无关时,这个向量必可由其余向量线性表示。
扩展资料:
线性表示的性质:
1、向量组α1,α2,……,αm中每个向量都可由向量组本身线性表示。
2、任一n维向量α=(α1,α2,……,αm)都可由n维单位向量组线性表示。
3、设α1,α2,……,αm线性无关,而α1,α2,……,αm,ß线性相关,则β可由α1,α2,……,αm线性表示,且表示是唯一的。