如图,P为三角形ABC 内一点,连结PA,PB,PC,在三角形PAB,PBC,PAC中,如果存在一个三角形与三角形ABC相
展开全部
解:⑴在Rt △ABC中,∠ ACB=90°,CD是AB上的中线,∴ ,∴CD=BD. ∴∠BCE=∠ABC.∵BE⊥CD,∴∠BEC=90°,∴∠BEC=∠ACB.∴△BCE∽△ABC. ∴E是△ABC的自相似点. ⑵①作图略.(根据画角等的方法,画出两个角就行了) 作法如下:(i)在∠ABC内,作∠CBD=∠A; (ii)在∠ACB内,作∠BCE=∠ABC;BD交CE于点P. 则P为△ABC的自相似点. ②连接PB、PC.∵P为△ABC的内心,∴ , . ∵P为△ABC的自相似点,∴△BCP∽△ABC. ∴∠PBC=∠A,∠BCP=∠ABC=2∠PBC =2∠A, ∠ACB=2∠BCP=4∠A.∵∠A+∠ABC+∠ACB=180°. ∴∠A+2∠A+4∠A=180°. ∴ .∴该三角形三个内角的度数分别为720/7 、180/7 、360/7 .
展开全部
就知道第二问②连接PB、PC.∵P为△ABC的内心,∴ , .
∵P为△ABC的自相似点,∴△BCP∽△ABC.
∴∠PBC=∠A,∠BCP=∠ABC=2∠PBC =2∠A,
∠ACB=2∠BCP=4∠A.∵∠A+∠ABC+∠ACB=180°.
∴∠A+2∠A+4∠A=180°.
∴ .∴该三角形三个内角的度数分别为720/7 、180/7 、360/7 .
∵P为△ABC的自相似点,∴△BCP∽△ABC.
∴∠PBC=∠A,∠BCP=∠ABC=2∠PBC =2∠A,
∠ACB=2∠BCP=4∠A.∵∠A+∠ABC+∠ACB=180°.
∴∠A+2∠A+4∠A=180°.
∴ .∴该三角形三个内角的度数分别为720/7 、180/7 、360/7 .
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
图呢?问题不清楚
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询