斯特瓦特定理怎么证明,以勾股定理证明。

注意!是以勾股定理为基础,不要用别的,不要用余弦定理,就是直接证明左边等于右边。... 注意!是以勾股定理为基础,不要用别的,不要用余弦定理,就是直接证明左边等于右边。 展开
1027228816
2011-12-14
知道答主
回答量:13
采纳率:0%
帮助的人:4.6万
展开全部
1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开,分成几段,表示所求平方根是几位数;小数部分从最高位向后两位一段隔开,段数以需要的精度+1为准。
2.根据左边第一段里的数,求得平方根的最高位上的数。(在右边例题中,比5小的平方数是4,所以平方根的最高位为2。)
3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数。
4.把求得的最高位的数乘以20去试除第一个余数,所得的最大整数作为试商。(右例中的试商即为[152/(2×20)]=[3.8]=3。)
5.用商的最高位数的20倍加上这个试商再乘以试商。如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试,得到的第一个小于余数的试商作为平方根的第二个数。(即3为平方根的第二位。)
6.用同样的方法,继续求平方根的其他各位上的数。用上一个余数减去上法中所求的积(即152-129=23),与第三段数组成新的余数(即2325)。这时再求试商,要用前面所得到的平方根的前两位数(即23)乘以20去试除新的余数(2325),所得的最大整数为新的试商。(2325/(23×20)的整数部分为5。)
7.对新试商的检验如前法。(右例中最后的余数为0,刚好开尽,则235为所求的平方根。)

如遇开不尽的情况,可根据所要求的精确度求出它的近似值。在《九章算术》里就已经介绍了上述笔算开平方法。
手动开立方
1.将被开立方数的整数部分从个位起向左每三位分为一组;
2.根据最左边一组,求得立方根的最高位数;
3.用第一组数减去立方根最高位数的立方,在其右边写上第二组数;
4.用求得的最高位数的平方的300倍试除上述余数,得出试商;
5.把求得的最高位数的平方的300倍与试商的积、求得的最高位数的30倍与试商的平方的积和试商的立方写在竖式左边,观察其和是否大于余数,若大于,就减小试商再试,若不大于,试商就是立方根的第二位数;
6.用同样的方法,继续求立方根的其他各位上的数。对新试商的检验亦如前法。
如果D为三角形ABC边BC上一点,且BD:DC=m:n  
则有(m+n)²AD²=(m+n)(mb²+nc²)-mna²   证 由BD:DC=m:n,有BD=am/(m+n)   
由余弦定理   
AD²=AB²+BD²-2AB×BDcosB   
=c²+〔am/(m+n)〕²-2c×〔am/(m+n)〕   
*〔(a²-b²+c²)/2ac〕   
  
即 (m+n)²×AD²=(m+n)(mb²+nc²)-mna²
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
罗雪梅x
2011-12-10
知道答主
回答量:43
采纳率:0%
帮助的人:17.8万
展开全部
如果D为三角形ABC边BC上一点,且BD:DC=m:n  
则有(m+n)²AD²=(m+n)(mb²+nc²)-mna²   证 由BD:DC=m:n,有BD=am/(m+n)   
由余弦定理   
AD²=AB²+BD²-2AB×BDcosB   
=c²+〔am/(m+n)〕²-2c×〔am/(m+n)〕   
*〔(a²-b²+c²)/2ac〕   
  
即 (m+n)²×AD²=(m+n)(mb²+nc²)-mna²
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2011-12-10
展开全部
若D为三角形ABC边BC上一点,且BD:DC=m:n  
则有(m+n)²AD²=(m+n)(mb²+nc²)-mna²   证 由BD:DC=m:n,有BD=am/(m+n)   
由余弦定理   
AD²=AB²+BD²-2AB×BDcosB   
=c²+〔am/(m+n)〕²-2c×〔am/(m+n)〕   
*〔(a²-b²+c²)/2ac〕   
即   
(m+n)²×AD²=(m+n)(mb²+nc²)-mna²
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
627878574
2011-12-13
知道答主
回答量:3
采纳率:0%
帮助的人:4950
展开全部
1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开,分成几段,表示所求平方根是几位数;小数部分从最高位向后两位一段隔开,段数以需要的精度+1为准。
2.根据左边第一段里的数,求得平方根的最高位上的数。(在右边例题中,比5小的平方数是4,所以平方根的最高位为2。)
3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数。
4.把求得的最高位的数乘以20去试除第一个余数,所得的最大整数作为试商。(右例中的试商即为[152/(2×20)]=[3.8]=3。)
5.用商的最高位数的20倍加上这个试商再乘以试商。如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试,得到的第一个小于余数的试商作为平方根的第二个数。(即3为平方根的第二位。)
6.用同样的方法,继续求平方根的其他各位上的数。用上一个余数减去上法中所求的积(即152-129=23),与第三段数组成新的余数(即2325)。这时再求试商,要用前面所得到的平方根的前两位数(即23)乘以20去试除新的余数(2325),所得的最大整数为新的试商。(2325/(23×20)的整数部分为5。)
7.对新试商的检验如前法。(右例中最后的余数为0,刚好开尽,则235为所求的平方根。)

如遇开不尽的情况,可根据所要求的精确度求出它的近似值。在《九章算术》里就已经介绍了上述笔算开平方法。
手动开立方
1.将被开立方数的整数部分从个位起向左每三位分为一组;
2.根据最左边一组,求得立方根的最高位数;
3.用第一组数减去立方根最高位数的立方,在其右边写上第二组数;
4.用求得的最高位数的平方的300倍试除上述余数,得出试商;
5.把求得的最高位数的平方的300倍与试商的积、求得的最高位数的30倍与试商的平方的积和试商的立方写在竖式左边,观察其和是否大于余数,若大于,就减小试商再试,若不大于,试商就是立方根的第二位数;
6.用同样的方法,继续求立方根的其他各位上的数。对新试商的检验亦如前法。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式