线性代数题欧式空间
设a1,a2…am是n维欧式空间V的一个标准正交向量组。证明对V中任意向量a有【求和(i从1开始到m)】(a,ai)^2≤a的模长的平方...
设a1,a2…am是n维欧式空间V的一个标准正交向量组。证明对V中任意向量a有【求和(i从1开始到m)】(a,ai)^2≤a的模长的平方
展开
2个回答
展开全部
记Q=【a1,a2,...,an】是正交阵,其中am+1,am+2,...,an和a1,...,am组成V的正交基,因此有Q^Ta模长的平方=a^TQQ^Ta=a^Ta=a的模长的平方。注意到要证不等式的左边是向量Q^Ta的前m个分量,因此不等式成立。
追问
Q^Ta模长的平方=a^TQQ^Ta=a^Ta=a的模长的平方
是怎么来的
追答
任意一个向量a的模长的平方都是a^Ta=a1^2+a2^2+...+an^2,这是必须知道的内容
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询