根号(1+x平方)的积分怎么解

飘渺的绿梦
推荐于2017-09-12 · TA获得超过3.5万个赞
知道大有可为答主
回答量:3091
采纳率:100%
帮助的人:1750万
展开全部
令x=tanα,则:√(1+x^2)=√[1+(tanα)^2]=1/cosα, dx=[1/(cosα)^2]dα。

sinα=√{(sinα)^2/[(sinα)^2+(cosα)^2]}=√{(tanα)^2/[1+(tanα)^2}
=x/√(1+x^2),

∴原式=∫{(1/cosα)[1/(cosα)^2]}dα
   =∫[cosα/(cosα)^4]dα
   =∫{1/[1-(sinα)^2]^2}d(sinα)。

再令sinα=u,则:
原式=∫[1/(1-u^2)^2]du
  =(1/4)∫[(1+u+1-u)^2/(1-u^2)^2]du
  =(1/4)∫[(1+u)^2/(1-u^2)^2]du+(1/2)∫[(1-u^2)/(1-u^2)^2]du
   +(1/4)∫[(1-u)^2/(1-u^2)^2]du
  =(1/4)∫[1/(1-u)^2]du+(1/2)∫[1/(1-u^2)]du+(1/4)∫[1/(1+u)^2]du
  =-(1/4)∫[1/(1-u)^2]d(1-u)+(1/4)∫[(1+u+1-u)/(1-u^2)]du
   +(1/4)∫[1/(1+u)^2]d(1+u)
  =(1/4)[1/(1-u)]-(1/4)[1/(1+u)]+(1/4)∫[1/(1-u)]du
   +(1/4)∫[1/(1+u)]du
  =(1/4)[1/(1-sinα)]-(1/4)[1/(1+sinα)]
   -(1/4)∫[1/(1-u)]d(1-u)+(1/4)∫[1/(1+u)]d(1+u)
  =(1/4){1/[1-x/√(1+x^2)]}-(1/4){1/[1+x/√(1+x^2)]}
   -(1/4)ln|1-u|+(1/4)ln|1+u|+C
  =(1/4)[1+x/√(1+x^2)-1+x/√(1+x^2)]/[1-x^2/(1+x^2)]
   +(1/4)ln|1+sinα|-(1/4)ln|1-sinα|+C
  =(1/4)[2x/√(1+x^2)]/[(1+x^2-x^2)/(1+x^2)]
   +(1/4)ln[|1+x/√(1+x^2)|/|1-x/√(1+x^2)|]+C
  =(1/2)x√(1+x^2)+(1/4)ln|[√(1+x^2)+x]/[√(1+x^2)-x]|+C
  =(1/2)x√(1+x^2)+(1/4)ln|[√(1+x^2)+x]^2/(1+x^2-x^2)|+C
  =(1/2)x√(1+x^2)+(1/2)ln|x+√(1+x^2)|+C
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
1786084742
2011-12-10
知道答主
回答量:6
采纳率:0%
帮助的人:9215
展开全部
=1x平方
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式