试求一个正交的相似变换矩阵P,将已知的3阶对称阵A化为对角阵
已知3阶对称阵A=2,2,-22,5,-4-2,-4,5我算出来|A-λE|=-(λ-10)(λ-1)^2然后λ=1时不会做了。。。...
已知3阶对称阵A=
2,2,-2
2,5,-4
-2,-4,5
我算出来|A-λE|=-(λ-10)(λ-1)^2
然后λ=1时不会做了。。。 展开
2,2,-2
2,5,-4
-2,-4,5
我算出来|A-λE|=-(λ-10)(λ-1)^2
然后λ=1时不会做了。。。 展开
1个回答
展开全部
把λ=1代入方程组(A-λE)X=0中,得到该方程组的系数矩阵为
1 2 -2 1 2 -2
2 4 -4 → 0 0 0
-2 -4 4 0 0 0
所以,这时,方程组与方程x1+2x2-2x3=0(x2,x3为自由未知量)同解,因此,令x2=1,x3=0,得到方程组的一个解,(-2,1,0)^T.
再令x2=0,x3=1,得到方程组的另一个与之线性无关的解,(2,0,1)^T.
所以,这时方程组的一个基础解系为(-2,1,0)^T,(2,0,1)^T。
当λ=10时,该方程组的系数矩阵为
-8 2 -2 2 -5 -4 2 -5 -4 2 -5 -4
2 -5 -4 → -8 2 -2 → 0 -18 -18 → 0 1 1
-2 -4 -5 -2 -4 -5 0 -9 -9 0 0 0
所以,这时方程组与2x1-5x2-4x3=0,x2+x3=0(x3为自由未知量)同解,令x3=﹣2,得到方程组的一个基础解系为(1,2,-2)^T.
令a1=(-2,1,0)^T,a2=(2,0,1)^T,a3=(1,2,-2)^T,则根据施密特正交化方法,c1=a1/||a1||=1/√5×(-2,1,0)^T,b2=a2-(a2,c1)c1=(2/5,4/5,1)^T,c2=b2/||b2||=(√5)/3×(2/5,4/5,1)^T,b3=a3-(a3,c1)c1-(a3,c2)c2=a3,c3=b3/||b3||=1/3×(1,2,-2)^T.
所以,矩阵P=﹣2/√5 2√5/15 1/3 它所对应的对角阵为1 0 0
1/√5 4√5/15 2/3 0 1 0
0 √5/3 -2/3 0 0 10
1 2 -2 1 2 -2
2 4 -4 → 0 0 0
-2 -4 4 0 0 0
所以,这时,方程组与方程x1+2x2-2x3=0(x2,x3为自由未知量)同解,因此,令x2=1,x3=0,得到方程组的一个解,(-2,1,0)^T.
再令x2=0,x3=1,得到方程组的另一个与之线性无关的解,(2,0,1)^T.
所以,这时方程组的一个基础解系为(-2,1,0)^T,(2,0,1)^T。
当λ=10时,该方程组的系数矩阵为
-8 2 -2 2 -5 -4 2 -5 -4 2 -5 -4
2 -5 -4 → -8 2 -2 → 0 -18 -18 → 0 1 1
-2 -4 -5 -2 -4 -5 0 -9 -9 0 0 0
所以,这时方程组与2x1-5x2-4x3=0,x2+x3=0(x3为自由未知量)同解,令x3=﹣2,得到方程组的一个基础解系为(1,2,-2)^T.
令a1=(-2,1,0)^T,a2=(2,0,1)^T,a3=(1,2,-2)^T,则根据施密特正交化方法,c1=a1/||a1||=1/√5×(-2,1,0)^T,b2=a2-(a2,c1)c1=(2/5,4/5,1)^T,c2=b2/||b2||=(√5)/3×(2/5,4/5,1)^T,b3=a3-(a3,c1)c1-(a3,c2)c2=a3,c3=b3/||b3||=1/3×(1,2,-2)^T.
所以,矩阵P=﹣2/√5 2√5/15 1/3 它所对应的对角阵为1 0 0
1/√5 4√5/15 2/3 0 1 0
0 √5/3 -2/3 0 0 10
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
东莞大凡
2024-11-14 广告
2024-11-14 广告
标定板认准大凡光学科技,专业生产研发厂家,专业从事光学影像测量仪,光学投影测量仪.光学三维测量仪,光学二维测量仪,光学二维测量仪,光学三维测量仪,光学二维测量仪.的研发生产销售。东莞市大凡光学科技有限公司创立于 2018 年,公司总部坐落于...
点击进入详情页
本回答由东莞大凡提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询