已知椭圆c经过点A(1,3/2),两焦点(1,0),(-1,0), E、F是椭圆上的动点,AF、AE斜率为相反数,求直线EF的斜率 20
1个回答
展开全部
设AE斜率为k
则AE方程为y-(3/2)=k(x-1)①
x²/4+y²/3=1②
①,②联立得出两个解一个是A(1,3/2)另一个是E(x1,y1)
①代入②消去y得(1/4+k²/3)x²-(2k²/3-k)x+k²/3-k-1/4=0
根据韦达定理x1·1=(k²/3-k-1/4)/(1/4+k²/3)③
将③的结果代入①式得
y1=(-k²/2-k/2+3/8)/(1/4+k²/3)
设AF斜率为-k,F(x2,y2)
则AF方程为y-(3/2)=-k(x-1)④
x²/4+y²/3=1②
②④联立同样解得
x2=(k²/3+k-1/4)/(1/4+k²/3)
y2=(-k²/2+k/2+3/8)/(1/4+k²/3)
EF斜率为
(y2-y1)/(x2-x1)=1/2
所以直线EF斜率为定值,这个定值是1/2。
则AE方程为y-(3/2)=k(x-1)①
x²/4+y²/3=1②
①,②联立得出两个解一个是A(1,3/2)另一个是E(x1,y1)
①代入②消去y得(1/4+k²/3)x²-(2k²/3-k)x+k²/3-k-1/4=0
根据韦达定理x1·1=(k²/3-k-1/4)/(1/4+k²/3)③
将③的结果代入①式得
y1=(-k²/2-k/2+3/8)/(1/4+k²/3)
设AF斜率为-k,F(x2,y2)
则AF方程为y-(3/2)=-k(x-1)④
x²/4+y²/3=1②
②④联立同样解得
x2=(k²/3+k-1/4)/(1/4+k²/3)
y2=(-k²/2+k/2+3/8)/(1/4+k²/3)
EF斜率为
(y2-y1)/(x2-x1)=1/2
所以直线EF斜率为定值,这个定值是1/2。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询