5个回答
展开全部
解:设圆心坐标为O(a,b),
则OA=OB=圆的半径R,
由题意可得:(a--1)^2+(b--2)^2=(a--1)^2+(b--0)^2 (1)
a--2b+1=0 (2)
由(1),(2)可求得:a=1, b=1,
R^2=(OB)^2=(a--1)^2+b^2=1,
所以 所求圆的方程为:(x--1)^2+(y--1)^2=1.
则OA=OB=圆的半径R,
由题意可得:(a--1)^2+(b--2)^2=(a--1)^2+(b--0)^2 (1)
a--2b+1=0 (2)
由(1),(2)可求得:a=1, b=1,
R^2=(OB)^2=(a--1)^2+b^2=1,
所以 所求圆的方程为:(x--1)^2+(y--1)^2=1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
AB垂直于X轴,则AB的垂直平分线垂直于Y轴,且方程是Y=1,圆心必在直线Y=1与X-2Y+1=0的交点上.
解得交点坐标是(1,1),即圆心坐标是(1,1)
半径=根号[(1-1)^2+(2-1)^2]=1
所以,圆方程是(x-1)^2+ (y-1)^2=1
解得交点坐标是(1,1),即圆心坐标是(1,1)
半径=根号[(1-1)^2+(2-1)^2]=1
所以,圆方程是(x-1)^2+ (y-1)^2=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:设圆的方程为(x-a)^2+(y-b)^2=r^2
a-2b+1=0
(1-a)^2+(2-b)^2=r^2
(1-a)^2+b^2=r^2
解得:b=1 a=1 r=1
所以圆的方程为(x-1)^2+(y-1)^2=1
a-2b+1=0
(1-a)^2+(2-b)^2=r^2
(1-a)^2+b^2=r^2
解得:b=1 a=1 r=1
所以圆的方程为(x-1)^2+(y-1)^2=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-12-11
展开全部
∵线段AB的中点是C﹙1, 1﹚ ∴经过C且与AB垂直的直线是y=1
解 x-2y+1=0 和 y=1 组成的方程组得 x=1,y=1 ,即圆心O﹙1,1﹚
∵OA=2-1=1,∴圆半径r=1
∴所求的圆的方程是﹙x-1﹚+﹙y-1﹚=1
解 x-2y+1=0 和 y=1 组成的方程组得 x=1,y=1 ,即圆心O﹙1,1﹚
∵OA=2-1=1,∴圆半径r=1
∴所求的圆的方程是﹙x-1﹚+﹙y-1﹚=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询