2个回答
展开全部
用复合函数求导法则解不出来的,不过本题确实十分简单,需要解一个特征方程,λ^2+aλ=b,只要解出这个一元二次方程,根据二次方程的根就可以直接构造出微分方程的解。这在任何一本高数书中都有,需要讨论a和b
1、若是两个不相等的实数根,λ1,λ2,微分方程的解为:C1e^(λ1x)+C2e^(λ2x);
2、若是两个相等的实根,λ1=λ2,微分方程的解为:(C1+C2x)e^(λ1x);
3、若是一对共轭复数根,λ+iω,λ-iω,微分方程的解为:e^(λx)(C1cos(ωx)+C2sin(ωx))
1、若是两个不相等的实数根,λ1,λ2,微分方程的解为:C1e^(λ1x)+C2e^(λ2x);
2、若是两个相等的实根,λ1=λ2,微分方程的解为:(C1+C2x)e^(λ1x);
3、若是一对共轭复数根,λ+iω,λ-iω,微分方程的解为:e^(λx)(C1cos(ωx)+C2sin(ωx))
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询