展开全部
lim(x→0)(1/x^2-(cotx)^2)
=lim(x→0)[(cotx)^2-x^2]/x^2(cotx)^2
=lim(x→0)[(cosx)^2-x^2sinx^2]/[x^2cosx^2]
=lim(x→0)[-x^2+(1+x^2)cosx^2]/[x^2cosx^2]
=+∞
lim(x→1) (1-x)(tan(πx/2)
=lim(x→1)(1-x)/cot(πx/2)
=lim(x→1)(1-x)'/cot(πx/2)'
=lim(x→1) (-1)/[(π/2)/-(sinπx/2)^2]
=2/π
=lim(x→0)[(cotx)^2-x^2]/x^2(cotx)^2
=lim(x→0)[(cosx)^2-x^2sinx^2]/[x^2cosx^2]
=lim(x→0)[-x^2+(1+x^2)cosx^2]/[x^2cosx^2]
=+∞
lim(x→1) (1-x)(tan(πx/2)
=lim(x→1)(1-x)/cot(πx/2)
=lim(x→1)(1-x)'/cot(πx/2)'
=lim(x→1) (-1)/[(π/2)/-(sinπx/2)^2]
=2/π
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询