谁可以告诉我md5加密原理

有谁可以告诉我MD5加密原理以及现在有没有MD5解密工具最好加上解密原理以及工具——不要暴力的!!!!!!!!!!!!随便帮我解一下下别的MD5密码067ad05a8ed... 有谁可以告诉我MD5加密原理以及现在有没有MD5解密工具 最好加上解密原理以及工具 ——不要暴力的!!!!!!!!!!!!

随便帮我解一下下别的MD5密码
067ad05a8eddffcadcf9bf960848ca8f
展开
 我来答
puwei
2006-02-07 · TA获得超过669个赞
知道小有建树答主
回答量:359
采纳率:0%
帮助的人:232万
展开全部
2004年,已经被山东大学的王小云教授破解了。

以下是她在国际密码学会上发表的破解原理论文。
Collisions for Hash Functions
Collisions for Hash Functions
MD4, MD5, HAVAL-128 and RIPEMD
Xiaoyun Wang1, Dengguo Feng2, Xuejia Lai3, Hongbo Yu1
The School of Mathematics and System Science, Shandong University, Jinan250100, China1
Institute of Software, Chinese Academy of Sciences, Beijing100080, China2
Dept. of Computer Science and Engineering, Shanghai Jiaotong University, Shanghai, China3
xywang@sdu.edu.cn1
revised on August 17, 2004

1 Collisions for MD5
MD5 is the hash function designed by Ron Rivest [9] as a strengthened version of MD4 [8]. In 1993 Bert den
Boer and Antoon Bosselaers [1] found pseudo-collision for MD5 which is made of the same message with two
different sets of initial value. H. Dobbertin[3] found a free-start collision which consists of two different 512-bit
messages with a chosen initial value 0 V I .
ED BA x C B F x C B AC x A V I 763 4 0 D , 97 62 5 0 , 341042 3 0x B , 2375 12 0 : 0 0 0 0 0
Our attack can find many real collisions which are composed of two 1024-bit messages with the original
initial value 0 IV of MD5:
10325476 0 , 98 0 , 89 0 67452301 0 : 0 0 0 0 0 x D badcfe x C xefcdab ,B x A IV
) 0 , 2 ,..., 2 ,..., 2 , 0 , 0 , 0 , 0 ( , 31 15 31
1 1 C C M M
) 0 , 2 ,..., 2 ,..., 2 , 0 , 0 , 0 , 0 ( , 31 15 31
2 2 C C N N i i
(non-zeros at position 4,11 and 14)
such that
) , ( 5 ) , ( 5 i i N M MD N M MD .
On IBM P690, it takes about one hour to find such M and M , after that, it takes only 15 seconds to 5
minutes to find i N and i N , so that ) , ( i N M and ) , ( i N M will produce the same hash same value. Moreover,
our attack works for any given initial value.
The following are two pairs of 1024-bit messages producing collisions, the two examples have the same 1-st
half 512 bits.
M
2dd31d1 c4eee6c5 69a3d69 5cf9af98 87b5ca2f ab7e4612 3e580440 897ffbb8
634ad55 2b3f409 8388e483 5a417125 e8255108 9fc9cdf7 f2bd1dd9 5b3c3780
X1
N1
d11d0b96 9c7b41dc f497d8e4 d555655a c79a7335 cfdebf0 66f12930 8fb109d1
797f2775 eb5cd530 baade822 5c15cc79 ddcb74ed 6dd3c55f d80a9bb1 e3a7cc35
M0
2dd31d1 c4eee6c5 69a3d69 5cf9af98 7b5ca2f ab7e4612 3e580440 897ffbb8
634ad55 2b3f409 8388e483 5a41f125 e8255108 9fc9cdf7 72bd1dd9 5b3c3780
X1
N1
d11d0b96 9c7b41dc f497d8e4 d555655a 479a7335 cfdebf0 66f12930 8fb109d1
797f2775 eb5cd530 baade822 5c154c79 ddcb74ed 6dd3c55f 580a9bb1 e3a7cc35
H 9603161f f41fc7ef 9f65ffbc a30f9dbf
M
2dd31d1 c4eee6c5 69a3d69 5cf9af98 87b5ca2f ab7e4612 3e580440 897ffbb8
634ad55 2b3f409 8388e483 5a417125 e8255108 9fc9cdf7 f2bd1dd9 5b3c3780
X2
N2
313e82d8 5b8f3456 d4ac6dae c619c936 b4e253dd fd03da87 6633902 a0cd48d2
42339fe9 e87e570f 70b654ce 1e0da880 bc2198c6 9383a8b6 2b65f996 702af76f
M0
2dd31d1 c4eee6c5 69a3d69 5cf9af98 7b5ca2f ab7e4612 3e580440 897ffbb8
634ad55 2b3f409 8388e483 5a41f125 e8255108 9fc9cdf7 72bd1dd9 5b3c3780

313e82d8 5b8f3456 d4ac6dae c619c936 34e253dd fd03da87 6633902 a0cd48d2
42339fe9 e87e570f 70b654ce 1e0d2880 bc2198c6 9383a8b6 ab65f996 702af76f
H 8d5e7019 6324c015 715d6b58 61804e08
Table 1 Two pairs of collisions for MD5
2 Collisions for HAVAL-128
HAVAL is proposed in [10]. HAVAL is a hashing algorithm that can compress messages of any length in 3,4
or 5 passes and produce a fingerprint of length 128, 160, 192 or 224 bits.
Attack on a reduced version for HAVAL was given by P. R. Kasselman and W T Penzhorn [7], which
consists of last rounds for HAVAL-128. We break the full HAVAL-128 with only about the 26 HAVAL
computations. Here we give two examples of collisions of HAVAL-128, where
) 0 ,..., 0 , 2 ,.... 2 , 0 , 0 , 0 , 2 ( , 8 12 1 i i i C C M M
with non-zeros at position 0,11,18, and 31 ,... 2 , 1 , 0 i , such that ) ( ) ( M HAVAL M HAVAL .
M1
6377448b d9e59f18 f2aa3cbb d6cb92ba ee544a44 879fa576 1ca34633 76ca5d4f
a67a8a42 8d3adc8b b6e3d814 5630998d 86ea5dcd a739ae7b 54fd8e32 acbb2b36
38183c9a b67a9289 c47299b2 27039ee5 dd555e14 839018d8 aabbd9c9 d78fc632
fff4b3a7 40000096 7f466aac fffffbc0 5f4016d2 5f4016d0 12e2b0 f4307f87
M1
6377488b d9e59f18 f2aa3cbb d6cb92ba ee544a44 879fa576 1ca34633 76ca5d4f
a67a8a42 8d3adc8b b6e3d814 d630998d 86ea5dcd a739ae7b 54fd8e32 acbb2b36
38183c9a b67a9289 c47299ba 27039ee5 dd555e14 839018d8 aabbd9c9 d78fc632
fff4b3a7 40000096 7f466aac fffffbc0 5f4016d2 5f4016d0 12e2b0 f4307f87
H 95b5621c ca62817a a48dacd8 6d2b54bf
M2
6377448b d9e59f18 f2aa3cbb d6cb92ba ee544a44 879fa576 1ca34633 76ca5d4f
a67a8a42 8d3adc8b b6e3d814 5630998d 86ea5dcd a739ae7b 54fd8e32 acbb2b36
38183c9a b67a9289 c47299b2 27039ee5 dd555e14 839018d8 aabbd9c9 d78fc632
fff4b3a7 40000096 7f466aac fffffbc0 5f4016d2 5f4016d0 12e2b0 f5b16963

6377488b d9e59f18 f2aa3cbb d6cb92ba ee544a44 879fa576 1ca34633 76ca5d4f
a67a8a42 8d3adc8b b6e3d814 d630998d 86ea5dcd a739ae7b 54fd8e32 acbb2b36
38183c9a b67a9289 c47299ba 27039ee5 dd555e14 839018d8 aabbd9c9 d78fc632
fff4b3a7 40000096 7f466aac fffffbc0 5f4016d2 5f4016d0 12e2b0 f5b16963
H b0e99492 d64eb647 5149ef30 4293733c
Table 2 Two pairs of collision, where i=11 and these two examples differ only at the last word
3 Collisions for MD4
MD4 is designed by R. L. Rivest[8] . Attack of H. Dobbertin in Eurocrypto'96[2] can find collision with
probability 1/222. Our attack can find collision with hand calculation, such that
) 0 , 0 , 0 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2 2 , 2 , 0 ( , 16 31 28 31 C C M M
and ) ( 4 ) ( 4 M MD M MD .
M1
4d7a9c83 56cb927a b9d5a578 57a7a5ee de748a3c dcc366b3 b683a020 3b2a5d9f
c69d71b3 f9e99198 d79f805e a63bb2e8 45dd8e31 97e31fe5 2794bf08 b9e8c3e9
M1
4d7a9c83 d6cb927a 29d5a578 57a7a5ee de748a3c dcc366b3 b683a020 3b2a5d9f
c69d71b3 f9e99198 d79f805e a63bb2e8 45dc8e31 97e31fe5 2794bf08 b9e8c3e9
H 5f5c1a0d 71b36046 1b5435da 9b0d807a
M2
4d7a9c83 56cb927a b9d5a578 57a7a5ee de748a3c dcc366b3 b683a020 3b2a5d9f
c69d71b3 f9e99198 d79f805e a63bb2e8 45dd8e31 97e31fe5 f713c240 a7b8cf69

4d7a9c83 d6cb927a 29d5a578 57a7a5ee de748a3c dcc366b3 b683a020 3b2a5d9f
c69d71b3 f9e99198 d79f805e a63bb2e8 45dc8e31 97e31fe5 f713c240 a7b8cf69
H e0f76122 c429c56c ebb5e256 b809793
Table 3 Two pairs of collisions for MD4
4 Collisions for RIPEMD
RIPEMD was developed for the RIPE project (RACE Integrrity Primitives Evalustion, 1988-1992). In
1995, H. Dobbertin proved that the reduced version RIPEMD with two rounds is not collision-free[4]. We show
that the full RIPEMD also isnOt collision-free. The following are two pairs of collisions for RIPEMD:
) 2 , 0 , 0 , 0 , 0 , 2 2 , 0 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 0 , 0 ( , 31 31 18 20 ' C C M M i i
M1
579faf8e 9ecf579 574a6aba 78413511 a2b410a4 ad2f6c9f b56202c 4d757911
bdeaae7 78bc91f2 47bc6d7d 9abdd1b1 a45d2015 817104ff 264758a8 61064ea5
M1
579faf8e 9ecf579 574a6aba 78513511 a2b410a4 ad2f6c9f b56202c 4d757911
bdeaae7 78bc91f2 c7c06d7d 9abdd1b1 a45d2015 817104ff 264758a8 e1064ea5
H 1fab152 1654a31b 7a33776a 9e968ba7
M2
579faf8e 9ecf579 574a6aba 78413511 a2b410a4 ad2f6c9f b56202c 4d757911
bdeaae7 78bc91f2 47bc6d7d 9abdd1b1 a45d2015 a0a504ff b18d58a8 e70c66b6

579faf8e 9ecf579 574a6aba 78513511 a2b410a4 ad2f6c9f b56202c 4d757911
bdeaae7 78bc91f2 c7c06d7d 9abdd1b1 a45d2015 a0a504ff b18d58a8 670c66b6
H 1f2c159f 569b31a6 dfcaa51a 25665d24
Table 4 The collisions for RIPEMD
5 Remark
Besides the above hash functions we break, there are some other hash functions not having ideal security. For
example, collision of SHA-0 [6] can be found with about 240 computations of SHA-0 algorithms, and a collision
for HAVAL-160 can be found with probability 1/232.
Note that the messages and all other values in this paper are composed of 32-bit words, in each 32-bit word
the most left byte is the most significant byte.
1 B. den Boer, Antoon Bosselaers, Collisions for the Compression Function of MD5, Eurocrypto,93.
2 H. Dobbertin, Cryptanalysis of MD4, Fast Software Encryption, LNCS 1039, D. , Springer-Verlag, 1996.
3 H. Dobbertin, Cryptanalysis of MD5 compress, presented at the rump session of EurocrZpt'96.
4 Hans Dobbertin, RIPEMD with Two-round Compress Function is Not Collision-Free, J. Cryptology 10(1),
1997.
5 H. Dobbertin, A. Bosselaers, B. Preneel, "RIPMEMD-160: A Strengthened Version of RIPMMD," Fast
Software EncrZption, LNCS 1039, D.Gollmann, Ed., Springer-Verlag, 1996, pp. 71-82.
6 FIPS 180-1, Secure hash standard, NIST, US Department of Commerce, Washington D. C., April 1995.
7 P. R. Kasselman, W T Penzhorn , Cryptananlysis od reduced version of HAVAL, Vol. 36, No. 1, Electronic
Letters, 2000.
8 R. L. Rivest, The MD4 Message Digest Algorithm, Request for Comments (RFC)1320, Internet Activities
Board, Internet Privacy Task Force, April 1992.
9 R. L Rivest, The MD5 Message Digest Algorithm, Request for Comments (RFC)1321, Internet Activities
Board, Internet PrivacZ Task Force, April 1992.3RIPEMD-1281
10 Y. Zheng, J. Pieprzyk, J. Seberry, HAVAL--A One-way Hashing Algorithm with Variable Length of Output,
Auscrypto'92.
百度网友cd5536bbc
2006-02-07 · TA获得超过289个赞
知道小有建树答主
回答量:433
采纳率:0%
帮助的人:258万
展开全部
MD5的全称是Message-Digest Algorithm 5,在90年代初由MIT的计算机科学实验室和RSA Data Security Inc发明,经MD2、MD3和MD4发展而来。

Message-Digest泛指字节串(Message)的Hash变换,就是把一个任意长度的字节串变换成一定长的大整数。请注意我使用了“字节串”而不是“字符串”这个词,是因为这种变换只与字节的值有关,与字符集或编码方式无关。

MD5将任意长度的“字节串”变换成一个128bit的大整数,并且它是一个不可逆的字符串变换算法,换句话说就是,即使你看到源程序和算法描述,也无法将一个MD5的值变换回原始的字符串,从数学原理上说,是因为原始的字符串有无穷多个,这有点象不存在反函数的数学函数。

MD5的典型应用是对一段Message(字节串)产生fingerprint(指纹),以防止被“篡改”。举个例子,你将一段话写在一个叫readme.txt文件中,并对这个readme.txt产生一个MD5的值并记录在案,然后你可以传播这个文件给别人,别人如果修改了文件中的任何内容,你对这个文件重新计算MD5时就会发现。如果再有一个第三方的认证机构,用MD5还可以防止文件作者的“抵赖”,这就是所谓的数字签名应用。

MD5还广泛用于加密和解密技术上,在很多操作系统中,用户的密码是以MD5值(或类似的其它算法)的方式保存的,用户Login的时候,系统是把用户输入的密码计算成MD5值,然后再去和系统中保存的MD5值进行比较,而系统并不“知道”用户的密码是什么。

一些黑客破获这种密码的方法是一种被称为“跑字典”的方法。有两种方法得到字典,一种是日常搜集的用做密码的字符串表,另一种是用排列组合方法生成的,先用MD5程序计算出这些字典项的MD5值,然后再用目标的MD5值在这个字典中检索。

即使假设密码的最大长度为8,同时密码只能是字母和数字,共26+26+10=62个字符,排列组合出的字典的项数则是P(62,1)+P(62,2)….+P(62,8),那也已经是一个很天文的数字了,存储这个字典就需要TB级的磁盘组,而且这种方法还有一个前提,就是能获得目标账户的密码MD5值的情况下才可以。

在很多电子商务和社区应用中,管理用户的Account是一种最常用的基本功能,尽管很多Application Server提供了这些基本组件,但很多应用开发者为了管理的更大的灵活性还是喜欢采用关系数据库来管理用户,懒惰的做法是用户的密码往往使用明文或简单的变换后直接保存在数据库中,因此这些用户的密码对软件开发者或系统管理员来说可以说毫无保密可言,本文的目的是介绍MD5的Java Bean的实现,同时给出用MD5来处理用户的Account密码的例子,这种方法使得管理员和程序设计者都无法看到用户的密码,尽管他们可以初始化它们。但重要的一点是对于用户密码设置习惯的保护。

有兴趣的读者可以从这里取得MD5也就是RFC 1321的文本。http://www.ietf.org/rfc/rfc1321.txt
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2006-02-07
展开全部
http://www.xmd5.org/go_cn.htm
MD5在线加密 你的密码在这里加

.什么是MD5 :MD5 就是 Message(消息,信息) digest(消化,摘要) algorithm(运算法则) 翻译成普通话就是 信息摘要算法(一只:老大 什么叫算法 一头:吐血 !!!!!!!! ) 在90年代初由MIT的计算机科学实验室和RSA Data Security Inc发明,经MD2、MD3和MD4发展而来

2.md5是怎样进行加密的
这个要分步来讲 为了更好的明白 我们来举个例子来讲
如对一个字符串 "string" 进行加密 第一步 我们要把他转换成位 (MD5是对位进行操作) 假如你连什么叫位也不懂 那下面就不用看了 老大 讲是简明易懂 不还是天书嘛
现在ME们假设 string 转换为 位后 是 1010000101110101 当然肯定不是 ME在这里只是把他当作是 因为ME可没功夫再把这个字符串一个个的转成位 。
所以后面你就权当他是 这个字符串 转换 成位的样子就行了
往后呢 就要对这个字节串 (就是前面那个都是1和0的一老串 东西了)进行补位 至于怎么补 很简单 只要使你的这个串的长度(有多少个1或者0就是有多长)补成比512的倍数(n倍)位少64位就成 当然这里的位不超过512 只要补到512少64位就成 补的规则嘛 很简单 就是在你的位后先补一个1 其它的补0 就成了 那么补位后 这个串变成 10100000101110101 1(先补的那个1)0000...000
(总共512-64位) (一只:补了这么多 该补完了吧 一头:还差一点 一只:再吐血!!!!!!) 这些完成后还要在其后面补上一个64位的数据 当然这个数据也是有规定的(一只:屁话 要不分开来讲干嘛) 这个数据就是 原字节串的长度(当然这个长度已被转换成了64位 至此数据补 完 这样大家一看就能明白 其实补完后这串正好是512的倍数 512 * N-64+64
至此前两步 补位和补数据长度完成了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
xsw2
2006-02-07 · TA获得超过518个赞
知道小有建树答主
回答量:667
采纳率:55%
帮助的人:309万
展开全部
MD5好像已经被破解了,不过现在的MD5密码破解全都是暴力破解。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
finger99
2006-02-07 · TA获得超过119个赞
知道小有建树答主
回答量:200
采纳率:0%
帮助的人:122万
展开全部
MD5简介

MD5的全称是Message-Digest Algorithm 5,在90年代初由MIT的计算机科学实验室和RSA Data Security Inc发明,经MD2、MD3和MD4发展而来。

Message-Digest泛指字节串(Message)的Hash变换,就是把一个任意长度的字节串变换成一定长的大整数。请注意我使用了“字节串”而不是“字符串”这个词,是因为这种变换只与字节的值有关,与字符集或编码方式无关。

MD5将任意长度的“字节串”变换成一个128bit的大整数,并且它是一个不可逆的字符串变换算法,换句话说就是,即使你看到源程序和算法描述,也无法将一个MD5的值变换回原始的字符串,从数学原理上说,是因为原始的字符串有无穷多个,这有点象不存在反函数的数学函数。

MD5的典型应用是对一段Message(字节串)产生fingerprint(指纹),以防止被“篡改”。举个例子,你将一段话写在一个叫readme.txt文件中,并对这个readme.txt产生一个MD5的值并记录在案,然后你可以传播这个文件给别人,别人如果修改了文件中的任何内容,你对这个文件重新计算MD5时就会发现。如果再有一个第三方的认证机构,用MD5还可以防止文件作者的“抵赖”,这就是所谓的数字签名应用。

MD5还广泛用于加密和解密技术上,在很多操作系统中,用户的密码是以MD5值(或类似的其它算法)的方式保存的,用户Login的时候,系统是把用户输入的密码计算成MD5值,然后再去和系统中保存的MD5值进行比较,而系统并不“知道”用户的密码是什么。

一些黑客破获这种密码的方法是一种被称为“跑字典”的方法。有两种方法得到字典,一种是日常搜集的用做密码的字符串表,另一种是用排列组合方法生成的,先用MD5程序计算出这些字典项的MD5值,然后再用目标的MD5值在这个字典中检索。

即使假设密码的最大长度为8,同时密码只能是字母和数字,共26+26+10=62个字符,排列组合出的字典的项数则是P(62,1)+P(62,2)….+P(62,8),那也已经是一个很天文的数字了,存储这个字典就需要TB级的磁盘组,而且这种方法还有一个前提,就是能获得目标账户的密码MD5值的情况下才可以。

在很多电子商务和社区应用中,管理用户的Account是一种最常用的基本功能,尽管很多Application Server提供了这些基本组件,但很多应用开发者为了管理的更大的灵活性还是喜欢采用关系数据库来管理用户,懒惰的做法是用户的密码往往使用明文或简单的变换后直接保存在数据库中,因此这些用户的密码对软件开发者或系统管理员来说可以说毫无保密可言,本文的目的是介绍MD5的Java Bean的实现,同时给出用MD5来处理用户的Account密码的例子,这种方法使得管理员和程序设计者都无法看到用户的密码,尽管他们可以初始化它们。但重要的一点是对于用户密码设置习惯的保护。

有兴趣的读者可以从这里取得MD5也就是RFC 1321的文本。http://www.ietf.org/rfc/rfc1321.txt

实现策略

MD5的算法在RFC1321中实际上已经提供了C的实现,我们其实马上就能想到,至少有两种用Java实现它的方法,第一种是,用Java语言重新写整个算法,或者再说简单点就是把C程序改写成Java程序。第二种是,用JNI(Java Native Interface)来实现,核心算法仍然用这个C程序,用Java类给它包个壳。

但我个人认为,JNI应该是Java为了解决某类问题时的没有办法的办法(比如与操作系统或I/O设备密切相关的应用),同时为了提供和其它语言的互操作性的一个手段。使用JNI带来的最大问题是引入了平台的依赖性,打破了SUN所鼓吹的“一次编写到处运行”的Java好处。因此,我决定采取第一种方法,一来和大家一起尝试一下“一次编写到处运行”的好处,二来检验一下Java 2现在对于比较密集的计算的效率问题。

实现过程

限于这篇文章的篇幅,同时也为了更多的读者能够真正专注于问题本身,我不想就某一种Java集成开发环境来介绍这个Java Bean的制作过程,介绍一个方法时我发现步骤和命令很清晰,我相信有任何一种Java集成环境三天以上经验的读者都会知道如何把这些代码在集成环境中编译和运行。用集成环境讲述问题往往需要配很多屏幕截图,这也是我一直对集成环境很头疼的原因。我使用了一个普通的文本编辑器,同时使用了Sun公司标准的JDK 1.3.0 for Windows NT。

其实把C转换成Java对于一个有一定C语言基础的程序员并不困难,这两个语言的基本语法几乎完全一致.我大概花了一个小时的时间完成了代码的转换工作,我主要作了下面几件事:

把必须使用的一些#define的宏定义变成Class中的final static,这样保证在一个进程空间中的多个Instance共享这些数据
删去了一些无用的#if define,因为我只关心MD5,这个推荐的C实现同时实现了MD2 MD3和 MD4,而且有些#if define还和C不同编译器有关
将一些计算宏转换成final static 成员函数。
所有的变量命名与原来C实现中保持一致,在大小写上作一些符合Java习惯的变化,计算过程中的C函数变成了private方法(成员函数)。
关键变量的位长调整
定义了类和方法
需要注意的是,很多早期的C编译器的int类型是16 bit的,MD5使用了unsigned long int,并认为它是32bit的无符号整数。而在Java中int是32 bit的,long是64 bit的。在MD5的C实现中,使用了大量的位操作。这里需要指出的一点是,尽管Java提供了位操作,由于Java没有unsigned类型,对于右移位操作多提供了一个无符号右移:>>>,等价于C中的 >> 对于unsigned 数的处理。

因为Java不提供无符号数的运算,两个大int数相加就会溢出得到一个负数或异常,因此我将一些关键变量在Java中改成了long类型(64bit)。我个人认为这比自己去重新定义一组无符号数的类同时重载那些运算符要方便,同时效率高很多并且代码也易读,OO(Object Oriented)的滥用反而会导致效率低下。

限于篇幅,这里不再给出原始的C代码,有兴趣对照的读者朋友可以去看RFC 1321。MD5.java源代码

测试

在RFC 1321中,给出了Test suite用来检验你的实现是否正确:

MD5 ("") = d41d8cd98f00b204e9800998ecf8427e

MD5 ("a") = 0cc175b9c0f1b6a831c399e269772661

MD5 ("abc") = 900150983cd24fb0d6963f7d28e17f72

MD5 ("message digest") = f96b697d7cb7938d525a2f31aaf161d0

MD5 ("abcdefghijklmnopqrstuvwxyz") = c3fcd3d76192e4007dfb496cca67e13b

……

这些输出结果的含义是指:空字符串””的MD5值是d41d8cd98f00b204e9800998ecf8427e,字符串”a”的MD5值是0cc175b9c0f1b6a831c399e269772661……
编译并运行我们的程序:
javac –d . MD5.java
java beartool.MD5
为了将来不与别人的同名程序冲突,我在我的程序的第一行使用了package beartool;

因此编译命令javac –d . MD5.java 命令在我们的工作目录下自动建立了一个beartool目录,目录下放着编译成功的 MD5.class

我们将得到和Test suite同样的结果。当然还可以继续测试你感兴趣的其它MD5变换,例如:

java beartool.MD5 1234

将给出1234的MD5值。

可能是我的计算机知识是从Apple II和Z80单板机开始的,我对大写十六进制代码有偏好,如果您想使用小写的Digest String只需要把byteHEX函数中的A、B、C、D、E、F改成a、b、 c、d、e、f就可以了。

MD5据称是一种比较耗时的计算,我们的Java版MD5一闪就算出来了,没遇到什么障碍,而且用肉眼感觉不出来Java版的MD5比C版的慢。

为了测试它的兼容性,我把这个MD5.class文件拷贝到我的另一台Linux+IBM JDK 1.3的机器上,执行后得到同样结果,确实是“一次编写到处运行了”。

Java Bean简述

现在,我们已经完成并简单测试了这个Java Class,我们文章的标题是做一个Java Bean。

其实普通的Java Bean很简单,并不是什么全新的或伟大的概念,就是一个Java的Class,尽管 Sun规定了一些需要实现的方法,但并不是强制的。而EJB(Enterprise Java Bean)无非规定了一些必须实现(非常类似于响应事件)的方法,这些方法是供EJB Container使用(调用)的。

在一个Java Application或Applet里使用这个bean非常简单,最简单的方法是你要使用这个类的源码工作目录下建一个beartool目录,把这个class文件拷贝进去,然后在你的程序中import beartool.MD5就可以了。最后打包成.jar或.war是保持这个相对的目录关系就行了。

Java还有一个小小的好处是你并不需要摘除我们的MD5类中那个main方法,它已经是一个可以工作的Java Bean了。Java有一个非常大的优点是她允许很方便地让多种运行形式在同一组代码中共存,比如,你可以写一个类,它即是一个控制台Application和GUI Application,同时又是一个Applet,同时还是一个Java Bean,这对于测试、维护和发布程序提供了极大的方便,这里的测试方法main还可以放到一个内部类中,有兴趣的读者可以参考:http://www.cn.ibm.com/developerWorks/java/jw-tips/tip106/index.shtml

这里讲述了把测试和示例代码放在一个内部静态类的好处,是一种不错的工程化技巧和途径。

把Java Bean装到JSP里

正如我们在本文开头讲述的那样,我们对这个MD5 Bean的应用是基于一个用户管理,这里我们假设了一个虚拟社区的用户login过程,用户的信息保存在数据库的个名为users的表中。这个表有两个字段和我们的这个例子有关,userid :char(20)和pwdmd5 :char(32),userid是这个表的Primary Key,pwdmd5保存密码的MD5串,MD5值是一个128bit的大整数,表示成16进制的ASCII需要32个字符。

这里给出两个文件,login.html是用来接受用户输入的form,login.jsp用来模拟使用MD5 Bean的login过程。

为了使我们的测试环境简单起见,我们在JSP中使用了JDK内置的JDBC-ODBC Bridge Driver,community是ODBC的DSN的名字,如果你使用其它的JDBC Driver,替换掉login.jsp中的
Connection con= DriverManager.getConnection("jdbc:odbc:community", "", "");
即可。

login.jsp的工作原理很简单,通过post接收用户输入的UserID和Password,然后将Password变换成MD5串,然后在users表中寻找UserID和pwdmd5,因为UserID是users表的Primary Key,如果变换后的pwdmd5与表中的记录不符,那么SQL查询会得到一个空的结果集。

这里需要简单介绍的是,使用这个Bean只需要在你的JSP应用程序的WEB-INF/classes下建立一个beartool目录,然后将MD5.class拷贝到那个目录下就可以了。如果你使用一些集成开发环境,请参考它们的deploy工具的说明。在JSP使用一个java Bean关键的一句声明是程序中的第2行:

<jsp:useBean id='oMD5' scope='request' class='beartool.MD5'/>
这是所有JSP规范要求JSP容器开发者必须提供的标准Tag。

id=实际上是指示JSP Container创建Bean的实例时用的实例变量名。在后面的<%和%>之间的Java程序中,你可以引用它。在程序中可以看到,通过 pwdmd5=oMD5.getMD5ofStr (password)引用了我们的MD5 Java Bean提供的唯一一个公共方法: getMD5ofStr。

Java Application Server执行.JSP的过程是先把它预编译成.java(那些Tag在预编译时会成为java语句),然后再编译成.class。这些都是系统自动完成和维护的,那个.class也称为Servlet。当然,如果你愿意,你也可以帮助Java Application Server去干本该它干的事情,自己直接去写Servlet,但用Servlet去输出HTML那简直是回到了用C写CGI程序的恶梦时代。

如果你的输出是一个复杂的表格,比较方便的方法我想还是用一个你所熟悉的HTML编辑器编写一个“模板”,然后在把JSP代码“嵌入”进去。尽管这种JSP代码被有些专家指责为“空心粉”,它的确有个缺点是代码比较难管理和重复使用,但是程序设计永远需要的就是这样的权衡。我个人认为,对于中、小型项目,比较理想的结构是把数据表示(或不严格地称作WEB界面相关)的部分用JSP写,和界面不相关的放在Bean里面,一般情况下是不需要直接写Servlet的。

如果你觉得这种方法不是非常的OO(Object Oriented),你可以继承(extends)它一把,再写一个bean把用户管理的功能包进去。

到底能不能兼容?

我测试了三种Java应用服务器环境,Resin 1.2.3、Sun J2EE 1.2、IBM WebSphere 3.5,所幸的是这个Java Bean都没有任何问题,原因其实是因为它仅仅是个计算程序,不涉及操作系统,I/O设备。其实用其它语言也能简单地实现它的兼容性的,Java的唯一优点是,你只需提供一个形态的运行码就可以了。请注意“形态”二字,现在很多计算结构和操作系统除了语言本身之外都定义了大量的代码形态,很简单的一段C语言核心代码,转换成不同形态要考虑很多问题,使用很多工具,同时受很多限制,有时候学习一种新的“形态”所花费的精力可能比解决问题本身还多。比如光Windows就有EXE、Service、的普通DLL、COM DLL以前还有OCX等等等等,在Unix上虽说要简单一些,但要也要提供一个.h定义一大堆宏,还要考虑不同平台编译器版本的位长度问题。我想这是Java对我来说的一个非常重要的魅力吧。

MD5算法说明

一、补位
二、补数据长度
三、初始化MD5参数
四、处理位操作函数
五、主要变换过程
六、输出结果

补位:
MD5算法先对输入的数据进行补位,使得数据位长度LEN对512求余的结果是448。即数据扩展至K*512+448位。即K*64+56个字节,K为整数。
具体补位操作:补一个1,然后补0至满足上述要求。
补数据长度:
用一个64位的数字表示数据的原始长度B,把B用两个32位数表示。这时,数
据就被填补成长度为512位的倍数。
初始化MD5参数:
四个32位整数 (A,B,C,D) 用来计算信息摘要,初始化使用的是十六进制表
示的数字
A=0X01234567
B=0X89abcdef
C=0Xfedcba98
D=0X76543210

处理位操作函数:
X,Y,Z为32位整数。
F(X,Y,Z) = X&Y|NOT(X)&Z
G(X,Y,Z) = X&Z|Y?(Z)
H(X,Y,Z) = X xor Y xor Z
I(X,Y,Z) = Y xor (X|not(Z))

主要变换过程:
使用常数组T[1 ... 64], T[i]为32位整数用16进制表示,数据用16个32位
的整数数组M[]表示。
具体过程如下:

/* 处理数据原文 */
For i = 0 to N/16-1 do

/*每一次,把数据原文存放在16个元素的数组X中. */
For j = 0 to 15 do
Set X[j] to M[i*16+j].
end /结束对J的循环

/* Save A as AA, B as BB, C as CC, and D as DD.
*/
AA = A
BB = B
CC = C
DD = D

/* 第1轮*/
/* 以 [abcd k s i]表示如下操作
a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */

/* Do the following 16 operations. */
[ABCD 0 7 1] [DABC 1 12 2] [CDAB 2 17 3] [BCDA 3
22 4]
[ABCD 4 7 5] [DABC 5 12 6] [CDAB 6 17 7] [BCDA 7
22 8]
[ABCD 8 7 9] [DABC 9 12 10] [CDAB 10 17 11] [BCDA
11 22 12]
[ABCD 12 7 13] [DABC 13 12 14] [CDAB 14 17 15]
[BCDA 15 22 16]

/* 第2轮* */
/* 以 [abcd k s i]表示如下操作
a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */
/* Do the following 16 operations. */
[ABCD 1 5 17] [DABC 6 9 18] [CDAB 11 14 19] [BCDA
0 20 20]
[ABCD 5 5 21] [DABC 10 9 22] [CDAB 15 14 23]
[BCDA 4 20 24]
[ABCD 9 5 25] [DABC 14 9 26] [CDAB 3 14 27] [BCDA
8 20 28]
[ABCD 13 5 29] [DABC 2 9 30] [CDAB 7 14 31] [BCDA
12 20 32]

/* 第3轮*/
/* 以 [abcd k s i]表示如下操作
a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */
/* Do the following 16 operations. */
[ABCD 5 4 33] [DABC 8 11 34] [CDAB 11 16 35]
[BCDA 14 23 36]
[ABCD 1 4 37] [DABC 4 11 38] [CDAB 7 16 39] [BCDA
10 23 40]
[ABCD 13 4 41] [DABC 0 11 42] [CDAB 3 16 43]
[BCDA 6 23 44]
[ABCD 9 4 45] [DABC 12 11 46] [CDAB 15 16 47]
[BCDA 2 23 48]

/* 第4轮*/
/* 以 [abcd k s i]表示如下操作
a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */
/* Do the following 16 operations. */
[ABCD 0 6 49] [DABC 7 10 50] [CDAB 14 15 51]
[BCDA 5 21 52]
[ABCD 12 6 53] [DABC 3 10 54] [CDAB 10 15 55]
[BCDA 1 21 56]
[ABCD 8 6 57] [DABC 15 10 58] [CDAB 6 15 59]
[BCDA 13 21 60]
[ABCD 4 6 61] [DABC 11 10 62] [CDAB 2 15 63]
[BCDA 9 21 64]

/* 然后进行如下操作 */
A = A + AA
B = B + BB
C = C + CC
D = D + DD

end /* 结束对I的循环*/

输出结果。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式