已知:把Rt△ABC和Rt△DEF按如图甲摆放(点C与点F重合),点B,C(E),F在同一直线上。 。

∠BAC=∠DEF=90°∠ABC=45°,BC=9cm,DE=6cm,EF=8cm.如图乙,△DEF从图甲的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△D... ∠BAC=∠DEF=90°∠ABC=45°,BC=9cm,DE=6cm,EF=8cm.
如图乙,△DEF从图甲的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动同时,点P从△DEF的顶点F出发,以3cm/s的速度沿FD向点D匀速移动。当点P移动到D时,P停止移动,△DEF也随之停止移动。DE与AC相交于Q,连接BQ、PQ,设移动时间为t(s).解答下列问题:
(1)设三角形BQE的面积为y(cm²),求y与t之间的函数关系式,并写出自变量t的取值范围
(2)当t为何值时,三角形DPQ为等腰三角形?
(3)是否存在某一时刻t,使P、Q、B三点在同一直线上?若存在,求出此时t的值,若不存在,说明理由。
或告诉我这是2011年上海哪个区的数学试卷的题目
展开
帐号已注销
2012-06-09 · TA获得超过135个赞
知道答主
回答量:12
采纳率:0%
帮助的人:4.2万
展开全部
1)∵点A在线段PQ的垂直平分线上,
∴AP = AQ.
∵∠DEF = 45°,∠ACB = 90°,∠DEF+∠ACB+∠EQC = 180°,
∴∠EQC = 45°.
∴∠DEF =∠EQC.
∴CE = CQ.
由题意知:CE = t,BP =2 t,
∴CQ = t.
∴AQ = 8-t.
在Rt△ABC中,由勾股定理得:AB = 10 cm .
则AP = 10-2 t.
∴10-2 t = 8-t.
解得:t = 2.
答:当t = 2 s时,点A在线段PQ的垂直平分线上. ········ 4分
(2)过P作,交BE于M,
∴.
在Rt△ABC和Rt△BPM中,,
∴ . ∴PM = .
∵BC = 6 cm,CE = t, ∴ BE = 6-t.
∴y = S△ABC-S△BPE =-= -
= = .
∵,∴抛物线开口向上.
∴当t = 3时,y最小=.
答:当t = 3s时,四边形APEC的面积最小,最小面积为cm2.··············· 8分
(3)假设存在某一时刻t,使点P、Q、F三点在同一条直线上.
过P作,交AC于N,
∴.
∵,∴△PAN ∽△BAC.

∵NQ = AQ-AN,
∴NQ = 8-t-() = .
∵∠ACB = 90°,B、C(E)、F在同一条直线上,
∴∠QCF = 90°,∠QCF = ∠PNQ.
∵∠FQC = ∠PQN,
∴△QCF∽△QNP .
∴ . ∴ .
∵ ∴
解得:t = 1.
答:当t = 1s,点P、Q、F三点在同一条直线上.
朱婧莹9Q
2011-12-17 · TA获得超过5634个赞
知道小有建树答主
回答量:366
采纳率:0%
帮助的人:173万
展开全部
2010-2011学年上海市闸北区九年级(上)期末数学试卷
最后一题哦 呵呵 给我分啊
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式