ln(1+x²)的不定积分怎么求
展开全部
∫ ln(1+x²)dx
=xln(1+x²)-∫x dln(1+x²)
=xln(1+x²) - 2∫x²/(1+x²)dx
=xln(1+x²) -2∫[1- 1/(1+x²)] dx
=xln(1+x²) - 2x +2 arctanx +C
扩展资料
常用积分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
10)∫1/√(1-x^2) dx=arcsinx+c
展开全部
用分步积分
∫ln(1+x²)dx
=xln(1+x^2)-∫x*2x/(1+x^2)dx
=xln(1+x^2)-2∫(x^2+1-1)/(1+x^2)dx
=xln(1+x^2)-2∫[1-1/(1+x^2)]dx
=xln(1+x^2)-2x+2arctanx+C
∫ln(1+x²)dx
=xln(1+x^2)-∫x*2x/(1+x^2)dx
=xln(1+x^2)-2∫(x^2+1-1)/(1+x^2)dx
=xln(1+x^2)-2∫[1-1/(1+x^2)]dx
=xln(1+x^2)-2x+2arctanx+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫ ln(1+x²)dx
=xln(1+x²)-∫x dln(1+x²)
=xln(1+x²) - 2∫x²/(1+x²)dx
=xln(1+x²) -2∫[1- 1/(1+x²)] dx
=xln(1+x²) - 2x +2 arctanx +C
=xln(1+x²)-∫x dln(1+x²)
=xln(1+x²) - 2∫x²/(1+x²)dx
=xln(1+x²) -2∫[1- 1/(1+x²)] dx
=xln(1+x²) - 2x +2 arctanx +C
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询