若函数f(x)=loga(ax^2-x+3)在(2,4)上是增函数,则实数a的取值范围是
4个回答
展开全部
分两类讨论即可
1>a>0时
aX^2-X+3在(2,4)上是减函数
然后求导
2aX-1<0当在(2,4)恒成立
分离参数
a<1/(2x)
求∩
0<a<1/8
a>1时aX^2-X+3在(2,4)上是增函数
同理。。
最后两种情况求∪
1>a>0时
aX^2-X+3在(2,4)上是减函数
然后求导
2aX-1<0当在(2,4)恒成立
分离参数
a<1/(2x)
求∩
0<a<1/8
a>1时aX^2-X+3在(2,4)上是增函数
同理。。
最后两种情况求∪
更多追问追答
追问
看不懂,老大,请详细一点,3Q
追答
在定义域(2,4)内
1>a>0时
log函数是减函数
复合函数同增异减
复合函数是ax^2-x+3
所以它也是减函数~
同理a>1
log函数是增函数
复合函数同增异减
复合函数是ax^2-x+3
所以它也是增函数~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:设μ=ax2-x+3.
则原函数f(x)=loga(ax2-x+3)是函数:y=logaμ,μ=ax2-x+3的复合函数,
①当a>1时,因μ=logax在(0,+∞)上是增函数,
根据复合函数的单调性,得
函数μ=ax2-x+3在[2,4]上是增函数,
∴ {a×22-2+3>012a≤2
∴a>1.
②当0<a<1时,因μ=logax在(0,+∞)上是减函数,
根据复合函数的单调性,得
函数μ=ax2-x+3在[2,4]上是减函数,
∴ {a×42-4+3>012a≥4
∴ 1/16<a ≤1/8.
综上所述:a∈ (1/16,1/8]∪(1,+∞)
故答案为: (1/16,1/8]∪(1,+∞).
则原函数f(x)=loga(ax2-x+3)是函数:y=logaμ,μ=ax2-x+3的复合函数,
①当a>1时,因μ=logax在(0,+∞)上是增函数,
根据复合函数的单调性,得
函数μ=ax2-x+3在[2,4]上是增函数,
∴ {a×22-2+3>012a≤2
∴a>1.
②当0<a<1时,因μ=logax在(0,+∞)上是减函数,
根据复合函数的单调性,得
函数μ=ax2-x+3在[2,4]上是减函数,
∴ {a×42-4+3>012a≥4
∴ 1/16<a ≤1/8.
综上所述:a∈ (1/16,1/8]∪(1,+∞)
故答案为: (1/16,1/8]∪(1,+∞).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:设u(x)=ax^2-x
则f(x)=logu(x)
1)0<a<1 要使得函数f(x)递增,所以u(x)必须递减
u(x)=ax^2-x在[2,4]上递减,且ax^2-x>0
所以 1/(2a)>=4 u(4)=16a-4>0
所以无解
2) a>1 时,要使得函数f(x)递增,u(x)也必须递增
u(x)=ax^2-x在[2,4]上递增 且ax^2-x>0
所以 1/(2a)<=2, u(2)=4a-2>0
所以 a>=1/4且1>1/2
所以 a>1
综上a>1
则f(x)=logu(x)
1)0<a<1 要使得函数f(x)递增,所以u(x)必须递减
u(x)=ax^2-x在[2,4]上递减,且ax^2-x>0
所以 1/(2a)>=4 u(4)=16a-4>0
所以无解
2) a>1 时,要使得函数f(x)递增,u(x)也必须递增
u(x)=ax^2-x在[2,4]上递增 且ax^2-x>0
所以 1/(2a)<=2, u(2)=4a-2>0
所以 a>=1/4且1>1/2
所以 a>1
综上a>1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询