求行列式的值
x+123...n1x+23...n12x+3...n.........123...x+n谢谢给出解答过程...
x+1 2 3 ... n
1 x+2 3 ... n
1 2 x+3 ... n
.........
1 2 3 ... x+n
谢谢给出解答过程 展开
1 x+2 3 ... n
1 2 x+3 ... n
.........
1 2 3 ... x+n
谢谢给出解答过程 展开
1个回答
展开全部
解:
x+1 2 3 ... n
1 x+2 3 ... n
1 2 x+3 ... n
.........
1 2 3 ... x+n
x+n(n+1)/2 2 3........... n 1 2 3.............n
x+n(n+1)/2 x+2 3............n 1 x+2 3.............n
= x+n(n+1)/2 2 x+3..........n =[x+n(n+1)/2] 1 2 x+3..........n
.................... .....................
x+n(n+1)/2 2 3............x+n 1 2 3.............x+n
1 2 3..............n
0 x 0..............0
=[x+n(n+1)/2] 0 0 x..............0
.....................
0 0 0..............x
=[x+n(n+1)/2]*x^(n-1)
=x^n+n(n+1)x^(n+1)/2
希望对你有帮助,望采纳,谢谢~
x+1 2 3 ... n
1 x+2 3 ... n
1 2 x+3 ... n
.........
1 2 3 ... x+n
x+n(n+1)/2 2 3........... n 1 2 3.............n
x+n(n+1)/2 x+2 3............n 1 x+2 3.............n
= x+n(n+1)/2 2 x+3..........n =[x+n(n+1)/2] 1 2 x+3..........n
.................... .....................
x+n(n+1)/2 2 3............x+n 1 2 3.............x+n
1 2 3..............n
0 x 0..............0
=[x+n(n+1)/2] 0 0 x..............0
.....................
0 0 0..............x
=[x+n(n+1)/2]*x^(n-1)
=x^n+n(n+1)x^(n+1)/2
希望对你有帮助,望采纳,谢谢~
广州市麦修拓包装设备有限公司_
2023-06-12 广告
2023-06-12 广告
超级隐形码“澳格暗码”,是基于最先进的货币防伪材料,通过我公司的特殊工艺研发的小字符喷码机墨水。可实现肉眼不可见,紫外光不可见,只能使用澳格专用读取设备才看到喷码内容,达到防伪防窜货的效果!...
点击进入详情页
本回答由广州市麦修拓包装设备有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询