定积分问题,计算曲线y=((根号x)/3)*(3-x)上相对于1≤x≤3的一段弧的长度,过程,
2个回答
展开全部
y = (√x / 3)(3-x),dy/dx = (1-x)/(2√x),(dy/dx)² = (1-x)²/(4x)
The arc length = ∫[1,3] √[1 + (dy/dx)²] dx
= ∫[1,3] √[1 + (1-x)²/(4x)] dx
= ∫[1,3] √[(4x+1-2x+x²)/(4x)] dx
= ∫[1,3] √[(x+1)²/(4x)] dx
= ∫[1,3] (x+1)/(2√x) dx
= (1/2)∫[1,3] (√x + 1/√x) dx
= (1/2)[2/3 * x^(3/2) + 2√x] [1,3]
= (1/2)[(2/3 * 3^(3/2) + 2√3) - (2/3 + 2)]
= 2√3 - 4/3
The arc length = ∫[1,3] √[1 + (dy/dx)²] dx
= ∫[1,3] √[1 + (1-x)²/(4x)] dx
= ∫[1,3] √[(4x+1-2x+x²)/(4x)] dx
= ∫[1,3] √[(x+1)²/(4x)] dx
= ∫[1,3] (x+1)/(2√x) dx
= (1/2)∫[1,3] (√x + 1/√x) dx
= (1/2)[2/3 * x^(3/2) + 2√x] [1,3]
= (1/2)[(2/3 * 3^(3/2) + 2√3) - (2/3 + 2)]
= 2√3 - 4/3
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询