求不定积分∫x^4*√(4-x^2)dx

kknd0279
2011-12-15 · TA获得超过1.9万个赞
知道大有可为答主
回答量:3618
采纳率:73%
帮助的人:1669万
展开全部
令x=2sint,dx=2costdt
代入原式得:=∫16sin^4t.2cost.2costdt
=64∫sin^4t.cos^2tdt
=64∫sin²t * (sin2t / 2)² dt
=16∫(1 - cos2t)/2 * ( 1 - cos4t)/2 dt
=4 ∫(1 - cos2t) * ( 1 - cos4t) dt
=4 ∫(cos4tcos2t - cos2t - cos4t + 1) dt
=4 ∫((cos6t + cos2t) / 2 - cos2t - cos4t + 1) dt
=4[ sin6t / 12 - sin2t / 4 - sin4t / 4 + t] + C
=sin6t / 3 -sin2t - sin4t + 4t + C
t=arcsinx/2代入,得
∫x^4*√(4-x^2)dx= sin6√(4-x^2) / 3 -sin2√(4-x^2) - sin4√(4-x^2) + 4√(4-x^2) + C
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式