an=2n-1,Sn=n²,设bn=1/[根号(anS2n+1)]+[根号(an+1S2n-1)],设bn的前n项和为Tn,
an=2n-1,Sn=n²,设bn=1/[根号(anS2n+1)]+[根号(an+1S2n-1)],设bn的前n项和为Tn,若Tn≥L/[根号(2n+1)+1]...
an=2n-1,Sn=n²,设bn=1/[根号(anS2n+1)]+[根号(an+1S2n-1)],设bn的前n项和为Tn,若Tn≥L/[根号(2n+1)+1]对于任意n∈N*都成立,求实数L的取值范围
展开
2个回答
展开全部
bn=1/[根号(anS2n+1)]+[根号(an+1S2n-1)],
=1/2[1/√(2n-1)-1/√(2n+1)
Sn=1/2[1/1-1/√3+1/√3-1/√5+......-1/1/√(2n-1)+1/√(2n-1)-1/√(2n+1)]
=1/2[1-1/√(2n+1)]
=1/2[√(2n+1)-1]/√(2n+1)
Sn>=L/[√(2n+1)+1]
所以:
1/2[√(2n+1)-1]/√(2n+1)>=L/[√(2n+1)+1]
L<=n/√(2n+1)
=1/2[1/√(2n-1)-1/√(2n+1)
Sn=1/2[1/1-1/√3+1/√3-1/√5+......-1/1/√(2n-1)+1/√(2n-1)-1/√(2n+1)]
=1/2[1-1/√(2n+1)]
=1/2[√(2n+1)-1]/√(2n+1)
Sn>=L/[√(2n+1)+1]
所以:
1/2[√(2n+1)-1]/√(2n+1)>=L/[√(2n+1)+1]
L<=n/√(2n+1)
更多追问追答
追问
看不懂= =
bn=1/[根号(anS2n+1)]+[根号(an+1S2n-1)],
=1/2[1/√(2n-1)-1/√(2n+1)
请问这个怎么化的呢?
追答
哦
bn=1/[根号(anS2n+1)]+[根号(an+1S2n-1)],
=1/{√(4n^2-1)*[√(2n+1)+√(2n-1)]}
=[√(2n+1)-√(2n-1)]/[2√(4n^2-1)]
=1/2[1/√(2n-1)-1/√(2n+1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询