2个回答
展开全部
解:∵[(x^2+y^2)-(x-y)^2+2y(x-y)]/y
=[x^2+y^2-(x^2-2xy+y^2)+2y(x-y)]/y
=[[x^2+y^2-x^2+2xy-y^2)+2y(x-y)]/y
=[2xy+2y(x-y)]/y
=y[2x+2(x-y)]/y
=2x+2x-2y
=4x-2y
=2(2x-y)
又∵已知2x-y=10
∴2(2x-y)=2*10=20
∴[(x^2+y^2)-(x-y)^2+2y(x-y)]/y=20
=[x^2+y^2-(x^2-2xy+y^2)+2y(x-y)]/y
=[[x^2+y^2-x^2+2xy-y^2)+2y(x-y)]/y
=[2xy+2y(x-y)]/y
=y[2x+2(x-y)]/y
=2x+2x-2y
=4x-2y
=2(2x-y)
又∵已知2x-y=10
∴2(2x-y)=2*10=20
∴[(x^2+y^2)-(x-y)^2+2y(x-y)]/y=20
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询