3个回答
展开全部
定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式)。
因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法,求根公式法,换元法,长除法,短除法,除法等。
注意三原则
1.分解要彻底
2.最后结果只有小括号
3.最后结果中多项式首项系数为正(例如:-3x^2+x=x(-3x+1))
归纳方法:北师大版八下课本上有的
1.提公因式法。
2.公式法。
3.分组分解法。
4.凑数法。[x^2+(a+b)x+ab=(x+a)(x+b)]
5.组合分解法。
6.十字相乘法。
7.双十字相乘法。
8.配方法。
9.拆项补项法。
10.换元法。
11.长除法。
12.求根法。
13.图象法。
14.主元法。
15.待定系数法。
16.特殊值法。
17.因式定理法。
因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法,求根公式法,换元法,长除法,短除法,除法等。
注意三原则
1.分解要彻底
2.最后结果只有小括号
3.最后结果中多项式首项系数为正(例如:-3x^2+x=x(-3x+1))
归纳方法:北师大版八下课本上有的
1.提公因式法。
2.公式法。
3.分组分解法。
4.凑数法。[x^2+(a+b)x+ab=(x+a)(x+b)]
5.组合分解法。
6.十字相乘法。
7.双十字相乘法。
8.配方法。
9.拆项补项法。
10.换元法。
11.长除法。
12.求根法。
13.图象法。
14.主元法。
15.待定系数法。
16.特殊值法。
17.因式定理法。
参考资料: http://baike.baidu.com/view/19859.htm
2011-12-17
展开全部
前面的回答从理论上说是比较全面的,它涉及到因式分解的基本上所有方法,但如何灵活应用这些方法需要多做练习,把遇到的实际问题进行归纳整理,不会的问题具体提出来,大家都可以帮你分析、解答,自己体会、总结,真正去理解这些方法的具体应用,而不是死记硬背。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询