已知矩阵的的特征值和特征向量,反过来求矩阵本身。
若矩阵可相似对角化,则p=[a1,a2,a3...],P-1AP=^,如果有一个特征值是0,就是说如果“^”等于零怎么算...
若矩阵可相似对角化,则p=[a1,a2,a3...], P-1AP=^ , 如果有一个特征值是0 ,就是说如果“^”等于零怎么算
展开
展开全部
矩阵A可相似对角化,就是和你说的一样,其中a1,a2...一定是A的n个线性无关特征向量,对应的^一定是A的n个特征值.
由此已知了全部特征值,就可知^,已知了对应的特征向量就可找到对应的P,则P-1AP=^ ,
由此A=P^P-1.
而“^”等于零的含义是对角矩阵对角线上全为0,就是n阶0矩阵.一定要注意^是一个n阶矩阵,并且对角线上的元素是A的特征值,若^=0,说明A的特征值全部为0,说明A秩为0也是0矩阵.另一方面,按照我们上边的推法A=P^P-1=P0P-1=0,同样也说明了A=0.
注意你说的是有"一个"特征值是0的话,那其他n-1个是多少呢?此时^一定是0矩阵么?.
一定要体会矩阵的特征值有n个这个概念,以及^的对角线上为n个全部特征值.好多初学者都只将矩阵的一个特征值和n个特征值搞混.比如满足本题三阶矩阵特征值0,1,2,则^只能是diag{0,1,2},不能是diagram{0,0,0}.后者只能是特征值全为0的情形.
由此已知了全部特征值,就可知^,已知了对应的特征向量就可找到对应的P,则P-1AP=^ ,
由此A=P^P-1.
而“^”等于零的含义是对角矩阵对角线上全为0,就是n阶0矩阵.一定要注意^是一个n阶矩阵,并且对角线上的元素是A的特征值,若^=0,说明A的特征值全部为0,说明A秩为0也是0矩阵.另一方面,按照我们上边的推法A=P^P-1=P0P-1=0,同样也说明了A=0.
注意你说的是有"一个"特征值是0的话,那其他n-1个是多少呢?此时^一定是0矩阵么?.
一定要体会矩阵的特征值有n个这个概念,以及^的对角线上为n个全部特征值.好多初学者都只将矩阵的一个特征值和n个特征值搞混.比如满足本题三阶矩阵特征值0,1,2,则^只能是diag{0,1,2},不能是diagram{0,0,0}.后者只能是特征值全为0的情形.
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询