已知A.O.B在一条直线上,OC是角AOD的平分线,OE在角BOD内,若角DOE=三分之一角BOD,角COE=72,求EOB的度数
展开全部
∵A.O.B在一条直线上,OC是角AOD的平分线
∴∠AOC=∠COD
又∵OE在∠BOD内,∠DOE=1/3∠BOD
∴∠BOD=3∠DOE
∴∠BOE=2∠DOE
∴∠AOC+∠COD+∠DOE+∠BOE=180°
∴2∠COD+3∠DOE=180°
又∵∠COE=∠COD+∠DOE=72°
∴∠DOE+2×72°=180°
∴∠DOE=36°
∴∠EOB=72°
∴∠AOC=∠COD
又∵OE在∠BOD内,∠DOE=1/3∠BOD
∴∠BOD=3∠DOE
∴∠BOE=2∠DOE
∴∠AOC+∠COD+∠DOE+∠BOE=180°
∴2∠COD+3∠DOE=180°
又∵∠COE=∠COD+∠DOE=72°
∴∠DOE+2×72°=180°
∴∠DOE=36°
∴∠EOB=72°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∵A.O.B在一条直线上,OC是角AOD的平分线
∴∠AOC=∠COD
又∵OE在∠BOD内,∠DOE=1/3∠BOD
∴∠BOD=3∠DOE
∴∠BOE=2∠DOE
∴∠AOC+∠COD+∠DOE+∠BOE=180°
∴2∠COD+3∠DOE=180°
又∵∠COE=∠COD+∠DOE=72°
∴∠DOE+2×72°=180°
∴∠DOE=36°
∴∠EOB=72°
∴∠AOC=∠COD
又∵OE在∠BOD内,∠DOE=1/3∠BOD
∴∠BOD=3∠DOE
∴∠BOE=2∠DOE
∴∠AOC+∠COD+∠DOE+∠BOE=180°
∴2∠COD+3∠DOE=180°
又∵∠COE=∠COD+∠DOE=72°
∴∠DOE+2×72°=180°
∴∠DOE=36°
∴∠EOB=72°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:设∠AOC为X
2(72-X)+3X=180
144-2X+3X=180
X=36
180°-36°-72°=72°
答----------------------------
2(72-X)+3X=180
144-2X+3X=180
X=36
180°-36°-72°=72°
答----------------------------
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询