1为什么不是素数(质数)?
因为整数有一个性质,就是分解质因数的唯一性,及把一个大于1的整数分解质因数,他的形式是唯一的。而如果1是素数,则分解的形式就唯一的了,因为可以乘若干个1。所以规定1不是素数。
全体正整数可以分为三类:
(1)只能被“1”和它本身整除的数叫做素数,如:2,3,5,7,11,…;
(2)除了“1”和它本身以外,还能被其他数整除的数叫做合数,如:4,6,8,9,…;
(3)“1”既不是素数,也不是合数。
比如,1 001能被哪些数整除,其实质是将1 001分解素因数,由1 001=7×11×13,而且只有这一种分解结果,由此知道1 001除了被1和它本身整除以外,还能被7,11,13整除.若把“1”也算作素数,那么1 001分解素因数就会出现下面一些结果:
1 001=7×11×13,
1 001=1×7×11×13,
1 001=1×1×7×11×13,
……
也就是说,分解式中可随便添上几个因数“1”.
这样做,一方面对求1 001的因数毫无必要,另一方面分解素因素结果不唯一,又增添了不必要的麻烦.因此“1”不算作素数。
扩展资料
质数与黎曼猜想
我们之前谈到:质数与黎曼猜想之间有着千丝万缕的联系。1896年,法国科学院举行比赛:征稿证明黎曼定理。两位年轻的数学家阿达马和德·拉·瓦莱布桑获得了这一殊荣。
实际上这两位数学家并没有证明黎曼猜想,只是获得了一点进展,但是这一点进展就一举证明了欧拉和勒让德的猜想,把素数猜想变成了素数定理。黎曼猜想的威力可见一斑。
1901年,瑞典数学家科赫证明:如果黎曼猜想被证实,那么素数定理中的误差项c大约是√xln(x)的量级。
然而黎曼猜想到底是对是错?可能我们还需要等待许多年。即便黎曼猜想被证实,人们也只是在质数规律探索的过程中更近了一步,距离真正破解质数的规律,还有很长的路要走。也许质数就是宇宙留给人类的密码。
参考资料来源:百度百科-质数
“1”算作素数后,全体自然数分成素数和合数两类,岂不是更简单吗?原来在历史上,1曾经被当作质数。后来对合数进行分解时出现了一个问题:我们知道每个合数都可以分成质数的连乘积,每个质数叫做合数的质因数。 比如,1001 能被哪些数整除,其实质是将1001 分解素因数,由1001=7×11×13,而且只有这一种分解结果,知道1001 除了被1 和它本身整除以外,还能被7、11、13 整除。若把“1”也算作素数, 那么1001 分解素因数就会出现下面一些结果:
1001=7×11×13
1001=1×7×11×13
1001=1×1×7×11×13
..
也就是说,分解式中可随便添上几个因数“1”。这样做,一方面对求
1001 的因数毫无必要,另一方面分解素因素结果不唯一,又增添了不必要的
麻烦。因此“1”不算作素数。
2011-12-18
也就是说有两个不重合的因数的数叫做质数,而1只有一个因数,所以不是
这是国内的素数规定
其实国外都把1算作素数的