高二数学解析几何问题
在△ABC中,已知A(-1,0)、B(1,0),点C在AB的上方,且角ACB=45°,求点C的轨迹的方程。最好有过程,谢谢!...
在△ABC中,已知A(-1,0)、B(1,0),点C在AB的上方,且角ACB=45°,求点C的轨迹的方程。最好有过程,谢谢!
展开
4个回答
展开全部
设C(x,y)
AC直线斜率k1=y/(x+1)=tg(a1)
AB直线斜率k2=y/(x-1)=tg(a2)
|a1-a2|=45°
tg(|a1-a2|)=tg45°=1
a1>a2
(tg(a1)-tg(a2))/(1+tg(a1)tg(a2))=1
(tg(a1)-tg(a2))=1+tg(a1)tg(a2)
y/(x+1)-y/(x-1)=1+y/(x+1)y/(x-1)
xy-y-xy-y=x^2-1+y^2
x^2+y^2-2y-1=0
x^2+(y-1)^2=2 x>0
a1<a2
(tg(a2)-tg(a1))/(1+tg(a1)tg(a2))=1
(tg(a2)-tg(a1))=1+tg(a1)tg(a2)
y/(x-1)-y/(x+1)=1+y/(x+1)y/(x-1)
xy+y-xy+y=x^2-1+y^2
x^2+y^2+2y-1=0
x^2+(y+1)^2=2 x<0
C的轨迹的方程x^2+(y+1)^2=2 x<0 x^2+(y-1)^2=2 x>0
AC直线斜率k1=y/(x+1)=tg(a1)
AB直线斜率k2=y/(x-1)=tg(a2)
|a1-a2|=45°
tg(|a1-a2|)=tg45°=1
a1>a2
(tg(a1)-tg(a2))/(1+tg(a1)tg(a2))=1
(tg(a1)-tg(a2))=1+tg(a1)tg(a2)
y/(x+1)-y/(x-1)=1+y/(x+1)y/(x-1)
xy-y-xy-y=x^2-1+y^2
x^2+y^2-2y-1=0
x^2+(y-1)^2=2 x>0
a1<a2
(tg(a2)-tg(a1))/(1+tg(a1)tg(a2))=1
(tg(a2)-tg(a1))=1+tg(a1)tg(a2)
y/(x-1)-y/(x+1)=1+y/(x+1)y/(x-1)
xy+y-xy+y=x^2-1+y^2
x^2+y^2+2y-1=0
x^2+(y+1)^2=2 x<0
C的轨迹的方程x^2+(y+1)^2=2 x<0 x^2+(y-1)^2=2 x>0
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
展开全部
y>0
BC直线斜率k1=y/(x+1)=tg(a1)
AC直线斜率k2=y/(x-1)=tg(a2)
a1-a2=45°
(tg(a1)-tg(a2))/(1+tg(a1)tg(a2))=1
(tg(a1)-tg(a2))=1+tg(a1)tg(a2)
y/(x+1)-y/(x-1)=1+y/(x+1)y/(x-1)
xy-y-xy-y=x^2-1+y^2
x^2+y^2+2y-1=0
x^2+(y+1)^2=2(y>0)
BC直线斜率k1=y/(x+1)=tg(a1)
AC直线斜率k2=y/(x-1)=tg(a2)
a1-a2=45°
(tg(a1)-tg(a2))/(1+tg(a1)tg(a2))=1
(tg(a1)-tg(a2))=1+tg(a1)tg(a2)
y/(x+1)-y/(x-1)=1+y/(x+1)y/(x-1)
xy-y-xy-y=x^2-1+y^2
x^2+y^2+2y-1=0
x^2+(y+1)^2=2(y>0)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
我主动往你边上靠,除了暖暖,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询