分部积分[x^2arctanx/(1+x^2)]dx
1个回答
展开全部
∫x^2arctanx/(1+x^2)dx
=∫(x^2+1-1)arctanx/(1+x^2)dx
=∫arctanxdx-∫arctanx/(1+x^2)dx
=xarctanx-∫ x/(1+x^2)dx-∫arctanxd (arctanx)
=xarctanx-(1/2)∫ 1/(1+x^2)d(x^2)-(1/2)(arctanx)^2
=xarctanx-(1/2)ln(1+x^2)-(1/2)(arctanx)^2+C
=∫(x^2+1-1)arctanx/(1+x^2)dx
=∫arctanxdx-∫arctanx/(1+x^2)dx
=xarctanx-∫ x/(1+x^2)dx-∫arctanxd (arctanx)
=xarctanx-(1/2)∫ 1/(1+x^2)d(x^2)-(1/2)(arctanx)^2
=xarctanx-(1/2)ln(1+x^2)-(1/2)(arctanx)^2+C
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询