因式分解(x²-1)(x+3)(x+5)+12要过程
展开全部
(x²-1)(x+3)(x+5)+12
解:原式=(x+1)(x-1)(x+3)(x+5)+12
=[(x-1)(x+5)][(x+3)(x+1)]+12
=(x²+4x-5)(²+4x+3)+12
=[(x²+4x-1)-4][(x²+4x-1)+4]+12
=(x²+4x-1)²-4²+12
=(x²+4x-1)²-2²
=(x²+4x-1+2)(x²+4x-1-2)
=(x²+4x+1)(x²+4x-3)
解:原式=(x+1)(x-1)(x+3)(x+5)+12
=[(x-1)(x+5)][(x+3)(x+1)]+12
=(x²+4x-5)(²+4x+3)+12
=[(x²+4x-1)-4][(x²+4x-1)+4]+12
=(x²+4x-1)²-4²+12
=(x²+4x-1)²-2²
=(x²+4x-1+2)(x²+4x-1-2)
=(x²+4x+1)(x²+4x-3)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(x^2-1)(x+3)(x+5)+12
=(x+1)(x-1)(x+3)(x+5)+12
=[(x-1)(x+5)][(x+3)(x+1)]+12
=(x^2+4x-5)(x^2+4x+3)+12
=[(x^2+4x-1)-4][(x^2+4x-1)+4]+12
=(x^2+4x-1)^2-16+12
=(x^2+4x-1)^2-4
=(x^2+4x-1+2)(x^2+4x-1-2)
=(x^2+4x+1)(x^2+4x-3)
=(x+1)(x-1)(x+3)(x+5)+12
=[(x-1)(x+5)][(x+3)(x+1)]+12
=(x^2+4x-5)(x^2+4x+3)+12
=[(x^2+4x-1)-4][(x^2+4x-1)+4]+12
=(x^2+4x-1)^2-16+12
=(x^2+4x-1)^2-4
=(x^2+4x-1+2)(x^2+4x-1-2)
=(x^2+4x+1)(x^2+4x-3)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询