如图,在Rt△ABC中,以直角边AB为直径的圆O交斜边于D,OE平行BC交AC于E。求证:(1)DE是圆O的切线

(2)OE是Rt△ABC的中位线... (2)OE是Rt△ABC的中位线 展开
CHUYUIHUNG
2011-12-18 · TA获得超过8726个赞
知道小有建树答主
回答量:1129
采纳率:33%
帮助的人:919万
展开全部
证明
(1)DE与半圆O相切.
证明:连接OD、OE.
∵O、E分别是BA、BC的中点,
∴OE∥AC,
∴∠BOE=∠BAC,∠EOD=∠ADO,
∵OA=OD,
∴∠ADO=∠BAC.
∴∠BOE=∠EOD.
∵OD=OB,OE=OE,
∴△OBE≌△ODE.
∴∠ODE=∠OBE=90°.
∴DE与半圆O相切.
(2)解:∵在Rt△ABC中,BD⊥AC
∴Rt△ABD∽Rt△ABC
∴ AB/AC=AD/AC,即AB²=AD•AC∴AC= AB²/AD
∵AD,AB的长是方程x²-10x+24=0的两个根,
∴解方程x²-10x+24=0得:x1=4,x2=6.
∵AD<AB∴AD=4 AB=6∴AC=9,
在Rt△ABC中,AB=6,AC=9.
∴BC=√(AC²-AB²) =√(81-36) =3√5
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式