已知A,B是双曲线C的2个顶点,直线L垂直实轴,与双曲线交于P,Q两点,若向量PB*向量AQ=0,则双曲线C的离心率
1个回答
展开全部
设双曲线方程为x^2/a^2-y^2/b^2=1.
A(-a,0),B(a,0).
设点P(m,n),则点Q(m,-n),
向量PB=(a-m,-n), 向量AQ=(m+a,-n),
因为向量PB*向量AQ=0,
所以(a-m)*( m+a)+n*n=0,
即a^2-m^2+n^2=0.
m^2= a^2+n^2.
因为点P(m,n)在双曲线上,
所以m^2/a^2-n^2/b^2=1.
将m^2= a^2+n^2代入上式可得:
(a^2+n^2)/a^2-n^2/b^2=1.
1+ n^2/a^2-n^2/b^2=1.
n^2/a^2-n^2/b^2=0,
所以a^2=b^2,
又因c^2=a^2+b^2,
所以c^2=2a^2,c/a=√2,
即离心率是√2.
A(-a,0),B(a,0).
设点P(m,n),则点Q(m,-n),
向量PB=(a-m,-n), 向量AQ=(m+a,-n),
因为向量PB*向量AQ=0,
所以(a-m)*( m+a)+n*n=0,
即a^2-m^2+n^2=0.
m^2= a^2+n^2.
因为点P(m,n)在双曲线上,
所以m^2/a^2-n^2/b^2=1.
将m^2= a^2+n^2代入上式可得:
(a^2+n^2)/a^2-n^2/b^2=1.
1+ n^2/a^2-n^2/b^2=1.
n^2/a^2-n^2/b^2=0,
所以a^2=b^2,
又因c^2=a^2+b^2,
所以c^2=2a^2,c/a=√2,
即离心率是√2.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询