已知A,B是双曲线C的2个顶点,直线L垂直实轴,与双曲线交于P,Q两点,若向量PB*向量AQ=0,则双曲线C的离心率

fnxnmn
2011-12-20 · TA获得超过5.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:90%
帮助的人:6735万
展开全部
设双曲线方程为x^2/a^2-y^2/b^2=1.
A(-a,0),B(a,0).
设点P(m,n),则点Q(m,-n),
向量PB=(a-m,-n), 向量AQ=(m+a,-n),
因为向量PB*向量AQ=0,
所以(a-m)*( m+a)+n*n=0,
即a^2-m^2+n^2=0.
m^2= a^2+n^2.
因为点P(m,n)在双曲线上,
所以m^2/a^2-n^2/b^2=1.
将m^2= a^2+n^2代入上式可得:
(a^2+n^2)/a^2-n^2/b^2=1.
1+ n^2/a^2-n^2/b^2=1.
n^2/a^2-n^2/b^2=0,
所以a^2=b^2,
又因c^2=a^2+b^2,
所以c^2=2a^2,c/a=√2,
即离心率是√2.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式