设四元非齐次线性方程组的系数矩阵的秩为3,n1=(2,3,4,5)T,n2=(1,2,3,4)T都是它的解向量,求该方程组的通解

关键是什么是解向量,它和基础解系是什么关系需要完整的解体过程... 关键是什么是解向量,它和基础解系是什么关系需要完整的解体过程 展开
lry31383
高粉答主

推荐于2016-12-01 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.6亿
展开全部
设四元非齐次线性方程组为 Ax=b
(n1,n2 是其解向量, 即有 An1=b, An2=b)
因为 r(A)=3
所以 Ax=0 的基础解系含 4-r(A)=4-3=1 个解向量
所以 n1-n2 = (1,1,1,1)^T 是 Ax=0 的基础解系
所以通解为 n1+c(1,1,1,1)^T
影ian
2011-12-20 · TA获得超过417个赞
知道小有建树答主
回答量:450
采纳率:0%
帮助的人:313万
展开全部
解向量就是线性方程组的一组解啊。就是说 x1=2,x2=3,x3=4,x4=5是这个方程的解。四元,秩为3,即有一个自由变量,但给了两个不相关的解,就可以表示出通解了。这样你明白了么?后面的自己做OK?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式