判断:1、如线性规划的原问题存在可行解,则其对偶问题也一定存在可行解。
3个回答
展开全部
错。
根据若对偶理论,对偶问题都具有可行解,则优化目标相等的可行解就是最优解,关键是可行解可能有无限个,因此该说法错误。
对偶问题的弱对偶性,其推论:原问题有可行解且目标函数值无界(具有无界解),则其对偶问题无可行解。
平移直线y=-kx+P时,直线必须经过可行域,对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点。
扩展资料:
对偶问题:每一个线性规划问题都存在一个与其对偶的问题,原问题与对偶问题对一个实际问题从不同角度提出来,并进行描述,组成一对互为对偶的线性规划问题。
对偶空间:设V为数域P上一个n 维线性空间。V上全体线性函数组成的集合记作L(V,P)。定义在L(V,P)上的加法和数量乘法:(f+g)(a)=f(a)+g(a),(kf)(a)=kf(a),则L(V,P)也是数域P上的线性空间。这样构造的L(V,P)就称为V的对偶空间。
参考资料来源:百度百科-对偶
光点科技
2023-08-15 广告
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件...
点击进入详情页
本回答由光点科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询