展开全部
数列{an}是首项为a1,公比为q(q>0)的等比数列,前n项和Sn:
(1)q=1
Sn=n×a1 S(n+1)=(n+1)×a1
Tn=Sn/S( n+1)
= n/n+1
limTn = lim (n/n+1) = 1
(2)Sn=a1(1-q^n)/(1-q)
Tn=Sn/S( n+1)
Tn= a1(1-q^n)/(1-q) / a1(1-q^(n+1))/(1-q) = 1-q^n/1-q^(n+1)
1.当(0<q<1)时
limTn = lim1-q^n/1-q^(n+1) = 1
2.q>1时
limTn = lim1-q^n/1-q^(n+1) = lim q^n/ q^(n+1)=1/q
(1)q=1
Sn=n×a1 S(n+1)=(n+1)×a1
Tn=Sn/S( n+1)
= n/n+1
limTn = lim (n/n+1) = 1
(2)Sn=a1(1-q^n)/(1-q)
Tn=Sn/S( n+1)
Tn= a1(1-q^n)/(1-q) / a1(1-q^(n+1))/(1-q) = 1-q^n/1-q^(n+1)
1.当(0<q<1)时
limTn = lim1-q^n/1-q^(n+1) = 1
2.q>1时
limTn = lim1-q^n/1-q^(n+1) = lim q^n/ q^(n+1)=1/q
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询